2 resultados para Coalizões de interesses
em Université de Lausanne, Switzerland
Resumo:
In dieser Thèse "Studien zu einer Poetik des Engels" wird anhand verschiedener Texte aus verschiedenen Epochen, jedoch mit Akzent auf der zweiten Hàlfte des 20. Jahrhunderts, dem Erscheinen von Engeln in literarischen Texten nachgegangen, mit besonderem Augenmerk auf der poetologischen Dimension, die mit der Darstellung von Engelfiguren zusammenhàngt, und mit besonderer Beriicksichtigung der Konsequenzen fur die Texte, in denen sie erscheinen.¦Literarische Texte bieten nàmlich einen geeigneten Immanenzort fur diese Art Epi-phanie an, eine Erscheinungsmoglichkeit fur Engel. Die Art und Weise, wie Dichterinnen und Dichter sie in ihren Texten erscheinen lassen, steht im Zentrum des Interesses dieser Studien. Wie verkorpern sich Engel in diesen Texten? Wie sprechen sie und wie kann mit ihnen und von ihnen gesprochen werden? Welche poetischen Funktionen ubernehmen diese Figuren, von denen die Dichter sprechen und die sie sprechen lassen? Welche poetischen Dynamiken entstehen in diesen Texten durch die Engelserscheinungen?¦Der Engel, der traditionell als Bote (gr. angelos), als Vermittler oder Obermittler gilt, hat im Medium Literatur (oder Text) selbst auch eine mediale Funktion inne, sodass Engel und Literatur einander widerspiegeln und Engeltexte zu Orten werden, an denen eine sprachliche und poetologische Auseinandersetzung stattfinden kann, die sowohl der Lite¬ratur (und auch etwa dem Erzàhler) als auch dem Engel inhàrent ist und es mit dem Ver- mittlungs(un)vermogen zu tun hat.¦In diesen Studien geht es darum, die produktive und dynamische Leistung des Engels (oder der Engel) im Schreib- und im Leseprozess zu erfahren und nachzuzeichnen. Durch ihre Pràsenz im Text bringen Engel einen Perspektivenwechsel ins Spiel, der die Auseinandersetzung mit dem Text pràgt und den Text selbst beeinflusst, sodass die Engel diese Texte zur Schreib- und Leseerfahrung werden lassen.¦Engelsdichtungen erweisen sich als durch und durch relational, sie involvieren den Dichter sowie auch den Leser, der ihnen - lesend - begegnet, und beeinflussen den ganzen Text und seine Dynamik, da diese Figuren unmoglich von ihm abstrahiert werden konnen. Engel erweisen sich auch als àusserst subversiv, wenn sie dem nicht entsprechen, was man von ihnen erwartet, wenn sie sich den geltenden (sozialen, politischen, aber auch - im Medium Literatur - sprachlichen oder dichterischen) Regeln widersetzen.¦In einem einleitenden Kapitel wird die Fragestellung skizziert und anhand vieler Textbeispiele verfeinert, sowie auch die Methode veranschaulicht. Darin werden Texte von Wallace Stevens (The Necessary Angel), Jean Paul (Der Tod eines Engels), Wim Wenders und Peter Handke (Himmel über Berlin) betrachtet, sowie auch etwa von Goethe, Morike, Andersen, Tolstoi (Der Engel Gottes oder Wovon die Menschen leben), Pseudo- Strieker (Der König im Bade), Baudelaire.¦Die weiteren Kapitel sind als Fallstudien zu verstehen und setzen sich mit einzelnen Texten auseinander, die von verschiedenen Autoren und zu verschiedenen Zeiten geschrieben wurden und sich von der Gattung und der Lange her stark unterscheiden:¦- "Zwischen Lichterscheinung und Holzfigur": Zu einem Tagebucheintrag von Franz Kafka (25. Juni 1914).¦- "Schweigende Boten": Zu Heinrich Bolls Roman Der Engel schwieg [1949-1951 niedergeschrieben, erst 1992 posthum erschienen).¦- "Ein subversiver Engel - wider Willen": Zu Fridrich Dürrenmatts Komödie Ein Engel kommt nach Babylon (1. Fassung 1954, 2. Fassung 1957, Neufassung 1980).¦- Zu drei Engel-Texten von Ilse Aichinger:¦- "Ein errungenes Weihnachten - im Spiel": Zum Romankapitel Das grosse Spiel (6. Kapitel aus dem Roman Die grössere Hoffnung, 1948),¦- "»Habt ihr den Engel gesehen?« - Wenn sich mit den Engeln auf einmal jeder Sinn entzieht": Zur Erzählung Engel in der Nacht (1949; aus dem Band Der Gefesselte),¦- "Ober Verwirrung hinweg - Zur subversiven Poetik eines Engels": Zur Erzâhlung Der Engel (1963; aus dem Band Eliza Eliza).¦Im Schlusskapitel, in dem vergleichende Beobachtungen zu diesen Texten und ihren Analysen, Hervorhebungen der Gemeinsamkeiten und entscheidende poetische Merkmale dieser Texte erwähnt werden, wird nicht das Ziel angestrebt, eine Synthese aus dieser Vielfältigkeit zu machen, die in den verschiedenen Kapiteln zum Vorschein kommt. Vielmehr wird gezeigt, wie fruchtbar die Auseinandersetzung mit Engeln in diesen Texten ist und wie diese Texte sich von ihrem 'Gegenstand' berühren lassen, je auf unterschiedliche Weise.
Resumo:
Dans la th´eorie des repr´esentations modulaires des groupes finis, les modules d?endo-permutation occupent une place importante. En e_et, c?est le r?ole jou´e par ces modules dans l?analyse de la structure de certains modules simples pour des groupes finis p-nilpotents, qui a amen´e E. Dade `a en introduire le concept, en 1978. Quelques ann´ees plus tard, L. Puig a d´emontr´e que la source de n?importe quel module simple pour un groupe fini p-r´esoluble quelconque est un module d?endo-permutation. Plus r´ecemment, on s?est rendu compte que ces modules interviennent aussi dans l?analyse locale des cat´egories d´eriv´ees et dans l?´etude des syst`emes de fusion. La situation que l?on consid`ere est la suivante. On se donne un nombre premier p, un p-groupe fini P, un corps alg´ebriquement clos k de caract´eristique p et on veut d´eterminer tous les kP-modules d?endo-permutation couverts ind´ecomposables de type fini, c?est-`a-dire tous les kP-modules ind´ecomposables de type fini, tels que leur alg`ebre d?endomorphismes est un kP-module de permutation ayant un facteur direct trivial. On d´efinit une relation d?´equivalence sur l?ensemble de ces kP-modules et le produit tensoriel des modules induit une structure de groupe ab´elien sur l?ensemble des classes d?´equivalence. On appelle ce groupe, le groupe de Dade de P. Ainsi, classifier les modules d?endo-permutation couverts revient `a d´eterminer le groupe de Dade de P. Le groupe de Dade d?un p-groupe fini arbitraire est encore inconnu, bien qu?E. Dade, en 1978, ´etait d´ej`a parvenu `a la classification dans le cas o`u P est ab´elien. La premi`ere partie de ce travail de th`ese est consacr´ee au probl`eme de la classification dans le cas g´en´eral et r´esoud la question dans le cas de deux familles de p-groupes finis, `a savoir celle des p-groupes m´etacycliques, pour un nombre premier p impair, et celle des 2-groupes extrasp´eciaux, de la forme D8 _ · · · _ D8. Ces deux choix ont ´et´e motiv´es par le fait que ces groupes sont "presque" ab´eliens. De plus, certains r´esultats sur la structure du groupe de Dade d?un p-groupe fini quelconque rendent le groupe de Dade des groupes de ces deux familles plus simple `a ´etudier. Dans un deuxi`eme temps, nous nous sommes int´eress´es `a deux occurrences de ces modules dans la th´eorie de la repr´esentation des groupes finis, c?est-`a-dire `a deux raisons qui motivent leur ´etude. Ainsi, nous avons r´ealis´e des modules d?endo-permutation comme sources de modules simples. En particulier, il s?av`ere que, dans le cas d?un nombre premier p impair, tout module d?endo-permutation ind´ecomposable dont la classe est un ´el´ement de torsion dans le groupe de Dade est la source d?un module simple. Finalement, nous avons d´etermin´e, parmi tous les modules d?endo-permutation connus actuellement, lesquels poss`edent une r´esolution de permutation endo-scind´ee. Nous sommes arriv´es `a la conclusion que les seuls modules d?endo-permutation qui n?ont pas de r´esolution de permutation endo-scind´ee sont les modules "exceptionnels" apparaissant pour un 2-groupe de quaternions g´en´eralis´es.<br/><br/>In modular representation theory, endo-permutation modules occupy an important position. Indeed, the role that these modules play, in the analysis of the structure of some particular simple modules for finite p-nilpotent groups, induced E. Dade, in 1978, to give them their current name. A few years later, L. Puig proved that the source of any simple module for any finite psolvable group is an endo-permutation module. More recently, the occurrence of endo-permutation modules has also been noticed in the local analysis of splendid equivalences between derived categories and in the study of fusion systems. We consider the following situation. Given a prime number p, a finite pgroup P and an algebraically closed field k of characteristic p, we are looking for all finitely generated indecomposable capped endo-permutation kP-modules. That is, all finitely generated indecomposable kP-modules such that their endomorphism algebra is a permutation kP-module having a trivial direct summand. Then, we define an equivalence relation on the set of all isomorphism classes of such modules, and it turns out that the tensor product (over k) induces a structure of abelian group on this set. We call this group the Dade group of P. Hence, classifying all indecomposable finitely generated capped endo-permutation kPmodules is equivalent to determining the Dade group of P. At present, the Dade group of an arbitrary finite p-group is still unknown. However, E. Dade computed the Dade group of all finite abelian p-groups, in 1978 already. The first part of this doctoral thesis is concerned with the problem of the classification in the general case and solve it in the case of two families of finite p-groups, namely the metacyclic p-groups, for an odd prime number p, and the extraspecial 2-groups of the shape D8 _· · ·_D8. These two choices have been motivated by the fact that these groups are not far from being abelian. Moreover, some general results concerning the Dade group of arbitrary finite p-groups suggest that the Dade group of the groups belonging to these two families is easier to study. In the second part of this thesis, we have been looking at two particular occurrences of these modules in representation theory of finite groups which motivate the interest of their classification. Thus, we realised endo-permutation modules as sources of simple modules. In particular, it turns out that, in case p is an odd prime, any indecomposable module whose class in the Dade group is a torsion element is the source of some simple module. Finally, we considered all the modules we know at present and determined which ones have an endo-split permutation resolution. We could then conclude that all but the "exceptionnal" modules occurring in the generalized quaternion case have an endo-split permutation resolution.<br/><br/>"Module d?endo-permutation" n?est pas le nom d?une maladie exotique contagieuse (du moins pas `a ma connaissance), comme vous pourriez peut-?etre l?imaginer si vous faites partie des personnes qui croient que le titre de docteur n?est destin´e qu?aux m´edecins. Dans ce cas, il se peut que le sujet dont il est question ici vous cause quelques naus´ees et r´eveille de douloureux souvenirs d?´ecole, car un module d?endo-permutation est un objet math´ematique, alg´ebrique, plus pr´ecis´ement. Ce concept a ´et´e introduit il y a un quart de si`ecle, de l?autre c?ot´e de l?Atlantique, et il s?est r´ev´el´e su_samment int´eressant pour qu?aujourd?hui il ait franchi bien des fronti`eres, celles de l?alg`ebre y compris. Mais de quoi s?agit-il ? Si vous entendez le terme "endo-permutation" probablement pour la premi`ere fois, ce n?est certainement pas le cas pour celui de "module". Cependant, sa d´efinition dans le pr´esent contexte ne co¨ýncide avec aucune de celles figurant dans les dictionnaires ordinaires. Les personnes qui ont d´ej`a entendu parler de Frobenius, Burnside, Schur, ou encore Brauer, pourront vous dire qu?un module est une repr´esentation. "De quoi ?" vous demanderezvous. "Un spectacle de marionnettes, peut-?etre ?" Bien s?ur que non ! Un module d?endo-permutation est une repr´esentation particuli`ere de certains groupes finis, o`u un groupe n?est pas un groupe de rock, comme vous pouvez vous en douter, mais d´esigne un objet math´ematique connu par tous les ´etudiants en sciences au terme de leur premi`ere ann´ee universitaire (en th´eorie, du moins). La "popularit´e" de la notion de groupe, fini ou non, est due au fait que les groupes sont fr´equemment utilis´es, aussi bien dans le domaine abstrait des math´ematiques, que dans le monde r´eel des physiciens, chimistes et autres biologistes (pour ne citer qu?eux). "Mais comment peut-on utiliser concr`etement ces objets invisibles ?" vous demanderez-vous alors. Et bien, justement, en les consid´erant par l?interm´ediaire de leurs repr´esentations, c?est-`a-dire en leur associant des matrices, de fa¸con plus ou moins naturelle. Or, comme il y a "beaucoup trop" de matrices pour un groupe donn´e, elles sont classifi´ees selon certaines de leurs propri´et´es, ce qui permet de les r´epertorier dans diverses familles (celle des modules d?endo-permutation, par exemple). Un groupe est ainsi rendu "concret", car les donn´ees matricielles sont manipulables par tous les scienti- fiques (et leurs ordinateurs), qui peuvent alors les utiliser dans leurs recherches, afin de contribuer au progr`es de la science. En toute franchise, c?est bien loin de ces soucis terre-`a-terre que ce travail de th`ese sur la classification des modules d?endo-permutation a ´et´e accompli. En fait, quitte `a choquer certaines ?ames sensibles, sa r´ealisation est surtout due au caract`ere ´epicure de son auteur, qui, avouons-le, en a ´et´e pleinement satisfait !