54 resultados para Climate change adaptation
em Université de Lausanne, Switzerland
Resumo:
Chromosomal inversion polymorphisms are common in animals and plants, and recent models suggest that alternative arrangements spread by capturing different combinations of alleles acting additively or epistatically to favour local adaptation. It is also thought that inversions typically maintain favoured combinations for a long time by suppressing recombination between alternative chromosomal arrangements. Here, we consider patterns of linkage disequilibrium and genetic divergence in an old inversion polymorphism in Drosophila melanogaster (In(3R)Payne) known to be associated with climate change adaptation and a recent invasion event into Australia. We extracted, karyotyped and sequenced whole chromosomes from two Australian populations, so that changes in the arrangement of the alleles between geographically separated tropical and temperate areas could be compared. Chromosome-wide linkage disequilibrium (LD) analysis revealed strong LD within the region spanned by In(3R)Payne. This genomic region also showed strong differentiation between the tropical and the temperate populations, but no differentiation between different karyotypes from the same population, after controlling for chromosomal arrangement. Patterns of differentiation across the chromosome arm and in gene ontologies were enhanced by the presence of the inversion. These data support the notion that inversions are strongly selected by bringing together combinations of genes, but it is still not clear if such combinations act additively or epistatically. Our data suggest that climatic adaptation through inversions can be dynamic, reflecting changes in the relative abundance of different forms of an inversion and ongoing evolution of allelic content within an inversion.
Resumo:
Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin-based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV-radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV-radiation and dark colouration plays a role in UV-protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin-based colouration is likely to change as an evolutionary or plastic response to climate warming.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Climate change acts as a major new selective agent on many organisms, particularly at high latitudes where climate change is more pronounced than at lower latitudes. Studies are required to predict which species are at a high risk of extinction and whether certain phenotypes may be more affected by climate change than others. The identification of susceptible phenotypes is important for evaluating the potential negative effect of climate change on biodiversity at the inter- and intraspecific levels. Melanin-based coloration is an interesting and easily accessible candidate trait because, within certain species, reddish pheomelanin-based coloration is associated with adaptations to warm climates. However, it is unclear whether the same holds among species. We tested one prediction of this hypothesis in four owl genera (wood, scops, screech, and pygmy owls), namely that darker reddish species are more prevalent near the equator than polewards. Our comparative analysis is consistent with this prediction for the northern hemisphere, suggesting that pale reddish species may be adapted to cold climates and dark reddish species to warmer climates. Thus, climate change may have a larger negative impact on pale pheomelanic owls and favour dark pheomelanic species.
Resumo:
Much attention has been paid to the effects of climate change on species' range reductions and extinctions. There is however surprisingly little information on how climate change driven threat may impact the tree of life and result in loss of phylogenetic diversity (PD). Some plant families and mammalian orders reveal nonrandom extinction patterns, but many other plant families do not. Do these discrepancies reflect different speciation histories and does climate induced extinction result in the same discrepancies among different groups? Answers to these questions require representative taxon sampling. Here, we combine phylogenetic analyses, species distribution modeling, and climate change projections on two of the largest plant families in the Cape Floristic Region (Proteaceae and Restionaceae), as well as the second most diverse mammalian order in Southern Africa (Chiroptera), and an herbivorous insect genus (Platypleura) in the family Cicadidae to answer this question. We model current and future species distributions to assess species threat levels over the next 70years, and then compare projected with random PD survival. Results for these animal and plant clades reveal congruence. PD losses are not significantly higher under predicted extinction than under random extinction simulations. So far the evidence suggests that focusing resources on climate threatened species alone may not result in disproportionate benefits for the preservation of evolutionary history.
Resumo:
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species' ability to adapt (and hence its long-term viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data with modelling of species distributions under climate change to document this situation in an endangered lizard (Eulamprus leuraensis) from montane southeastern Australia. The species is known from only about 40 isolated swamps. Genetic diversity of lizard populations is greater in some sites than others, presumably reflecting consistently high habitat suitability over evolutionary time. Species distribution modelling suggests that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic distribution.
Resumo:
Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.
Resumo:
We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.
Resumo:
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.
Resumo:
Summary: Global warming has led to an average earth surface temperature increase of about 0.7 °C in the 20th century, according to the 2007 IPCC report. In Switzerland, the temperature increase in the same period was even higher: 1.3 °C in the Northern Alps anal 1.7 °C in the Southern Alps. The impacts of this warming on ecosystems aspecially on climatically sensitive systems like the treeline ecotone -are already visible today. Alpine treeline species show increased growth rates, more establishment of young trees in forest gaps is observed in many locations and treelines are migrating upwards. With the forecasted warming, this globally visible phenomenon is expected to continue. This PhD thesis aimed to develop a set of methods and models to investigate current and future climatic treeline positions and treeline shifts in the Swiss Alps in a spatial context. The focus was therefore on: 1) the quantification of current treeline dynamics and its potential causes, 2) the evaluation and improvement of temperaturebased treeline indicators and 3) the spatial analysis and projection of past, current and future climatic treeline positions and their respective elevational shifts. The methods used involved a combination of field temperature measurements, statistical modeling and spatial modeling in a geographical information system. To determine treeline shifts and assign the respective drivers, neighborhood relationships between forest patches were analyzed using moving window algorithms. Time series regression modeling was used in the development of an air-to-soil temperature transfer model to calculate thermal treeline indicators. The indicators were then applied spatially to delineate the climatic treeline, based on interpolated temperature data. Observation of recent forest dynamics in the Swiss treeline ecotone showed that changes were mainly due to forest in-growth, but also partly to upward attitudinal shifts. The recent reduction in agricultural land-use was found to be the dominant driver of these changes. Climate-driven changes were identified only at the uppermost limits of the treeline ecotone. Seasonal mean temperature indicators were found to be the best for predicting climatic treelines. Applying dynamic seasonal delimitations and the air-to-soil temperature transfer model improved the indicators' applicability for spatial modeling. Reproducing the climatic treelines of the past 45 years revealed regionally different attitudinal shifts, the largest being located near the highest mountain mass. Modeling climatic treelines based on two IPCC climate warming scenarios predicted major shifts in treeline altitude. However, the currently-observed treeline is not expected to reach this limit easily, due to lagged reaction, possible climate feedback effects and other limiting factors. Résumé: Selon le rapport 2007 de l'IPCC, le réchauffement global a induit une augmentation de la température terrestre de 0.7 °C en moyenne au cours du 20e siècle. En Suisse, l'augmentation durant la même période a été plus importante: 1.3 °C dans les Alpes du nord et 1.7 °C dans les Alpes du sud. Les impacts de ce réchauffement sur les écosystèmes - en particuliers les systèmes sensibles comme l'écotone de la limite des arbres - sont déjà visibles aujourd'hui. Les espèces de la limite alpine des forêts ont des taux de croissance plus forts, on observe en de nombreux endroits un accroissement du nombre de jeunes arbres s'établissant dans les trouées et la limite des arbres migre vers le haut. Compte tenu du réchauffement prévu, on s'attend à ce que ce phénomène, visible globalement, persiste. Cette thèse de doctorat visait à développer un jeu de méthodes et de modèles pour étudier dans un contexte spatial la position présente et future de la limite climatique des arbres, ainsi que ses déplacements, au sein des Alpes suisses. L'étude s'est donc focalisée sur: 1) la quantification de la dynamique actuelle de la limite des arbres et ses causes potentielles, 2) l'évaluation et l'amélioration des indicateurs, basés sur la température, pour la limite des arbres et 3) l'analyse spatiale et la projection de la position climatique passée, présente et future de la limite des arbres et des déplacements altitudinaux de cette position. Les méthodes utilisées sont une combinaison de mesures de température sur le terrain, de modélisation statistique et de la modélisation spatiale à l'aide d'un système d'information géographique. Les relations de voisinage entre parcelles de forêt ont été analysées à l'aide d'algorithmes utilisant des fenêtres mobiles, afin de mesurer les déplacements de la limite des arbres et déterminer leurs causes. Un modèle de transfert de température air-sol, basé sur les modèles de régression sur séries temporelles, a été développé pour calculer des indicateurs thermiques de la limite des arbres. Les indicateurs ont ensuite été appliqués spatialement pour délimiter la limite climatique des arbres, sur la base de données de températures interpolées. L'observation de la dynamique forestière récente dans l'écotone de la limite des arbres en Suisse a montré que les changements étaient principalement dus à la fermeture des trouées, mais aussi en partie à des déplacements vers des altitudes plus élevées. Il a été montré que la récente déprise agricole était la cause principale de ces changements. Des changements dus au climat n'ont été identifiés qu'aux limites supérieures de l'écotone de la limite des arbres. Les indicateurs de température moyenne saisonnière se sont avérés le mieux convenir pour prédire la limite climatique des arbres. L'application de limites dynamiques saisonnières et du modèle de transfert de température air-sol a amélioré l'applicabilité des indicateurs pour la modélisation spatiale. La reproduction des limites climatiques des arbres durant ces 45 dernières années a mis en évidence des changements d'altitude différents selon les régions, les plus importants étant situés près du plus haut massif montagneux. La modélisation des limites climatiques des arbres d'après deux scénarios de réchauffement climatique de l'IPCC a prédit des changements majeurs de l'altitude de la limite des arbres. Toutefois, l'on ne s'attend pas à ce que la limite des arbres actuellement observée atteigne cette limite facilement, en raison du délai de réaction, d'effets rétroactifs du climat et d'autres facteurs limitants.
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.