82 resultados para Classification, Degeneration, Lumbar intervertebral disc, Reliability, Validity
em Université de Lausanne, Switzerland
Resumo:
Introduction: Measures of the degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal, and dural sac cross sectional area vary, and do not correlate with symptoms or results of surgery. We created a grading system, comprised of seven categories, based on the morphology of the dural sac and its contents as seen on T2 axial images. The categories take into account the ratio of rootlet/ CSF content. Grade A indicates no significant compression, grade D is equivalent to a total myelograhic block. We compared this classification with commonly used criteria of severity of stenosis. Methods: Fifty T2 axial MRI images taken at disc level from 27 symptomatic LSS patients undergoing decompressive surgery were classified twice by two radiologists and three spinal surgeons working at different institutions and countries. Dural sac cross-sectional surface area and AP diameter of the canal were measured both at disc and pedicle level from DICOM images using OsiriX software. Intraand inter-observer reliability were assessed using Cohen's, Fleiss' kappa statistics, and t test. Results: For the morphological grading the average intra-and inter observer kappas were 0.76 and 0.69+, respectively, for physicians working in the study originating country. Combining all observers the kappa values were 0.57 ± 0.19. and 0.44 ± 0.19, respectively. AP diameter and dural sac cross-sectional area measurements showed no statistically significant differences between observers. No correlation between morphological grading and AP diameter or dural sac crosssectional areawas observed in 13 (26%) and 8 cases (16%), respectively. Discussion: The proposed morphological grading relies on the identification of the dural sac and CSF better seen on full MRI series. This was not available to the external observers, which might explain the lower overall kappa values. Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. The absence of a strict correlation with the dural sac surface suggests that measuring the surface alone might be insufficient in defining LSS as it is essentially a mismatch between the spinal canal and its contents. This grading is now adopted in our unit and further studies concentrating on relation between morphology, clinical symptoms and surgical results are underway.
Resumo:
PURPOSE: Currently, many pre-conditions are regarded as relative or absolute contraindications for lumbar total disc replacement (TDR). Radiculopathy is one among them. In Switzerland it is left to the surgeon's discretion when to operate if he adheres to a list of pre-defined indications. Contraindications, however, are less clearly specified. We hypothesized that, the extent of pre-operative radiculopathy results in different benefits for patients treated with mono-segmental lumbar TDR. We used patient perceived leg pain and its correlation with physician recorded radiculopathy for creating the patient groups to be compared. METHODS: The present study is based on the dataset of SWISSspine, a government mandated health technology assessment registry. Between March 2005 and April 2009, 577 patients underwent either mono- or bi-segmental lumbar TDR, which was documented in a prospective observational multicenter mode. A total of 416 cases with a mono-segmental procedure were included in the study. The data collection consisted of pre-operative and follow-up data (physician based) and clinical outcomes (NASS form, EQ-5D). A receiver operating characteristic (ROC) analysis was conducted with patients' self-indicated leg pain and the surgeon-based diagnosis "radiculopathy", as marked on the case report forms. As a result, patients were divided into two groups according to the severity of leg pain. The two groups were compared with regard to the pre-operative patient characteristics and pre- and post-operative pain on Visual Analogue Scale (VAS) and quality of life using general linear modeling. RESULTS: The optimal ROC model revealed a leg pain threshold of 40 ≤ VAS > 40 for the absence or the presence of "radiculopathy". Demographics in the resulting two groups were well comparable. Applying this threshold, the mean pre-operative leg pain level was 16.5 points in group 1 and 68.1 points in group 2 (p < 0.001). Back pain levels differed less with 63.6 points in group 1 and 72.6 in group 2 (p < 0.001). Pre-operative quality of life showed considerable differences with an 0.44 EQ-5D score in group 1 and 0.29 in group 2 (p < 0.001, possible score range -0.6 to 1). At a mean follow-up time of 8 months, group 1 showed a mean leg pain improvement of 3.6 points and group 2 of 41.1 points (p < 0.001). Back pain relief was 35.6 and 39.1 points, respectively (p = 0.27). EQ-5D score improvement was 0.27 in group 1 and 0.41 in group 2 (p = 0.11). CONCLUSIONS: Patients labeled as having radiculopathy (group 2) do mostly have pre-operative leg pain levels ≥ 40. Applying this threshold, the patients with pre-operative leg pain do also have more severe back pain and a considerably lower quality of life. Their net benefit from the lumbar TDR is higher and they do have similar post-operative back and leg pain levels as well as the quality of life as patients without pre-operative leg pain. Although randomized controlled trials are required to confirm these findings, they put leg pain and radiculopathy into perspective as absolute contraindications for TDR.
Resumo:
We report on the modelling and experimental validation of a photopolymerizable hydrogel for a Nucleus Pulposus replacement.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.
Resumo:
Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.
Resumo:
Surgical decision-making in lumbar spinal stenosis involves assessment of clinical parameters and the severity of the radiological stenosis. We suspected that surgeons based surgical decisions more on dural sac cross-sectional area (DSCA) than on the morphology of the dural sac. We carried out a survey among members of three European spine societies. The axial T2-weighted MR images from ten patients with varying degrees of DSCA and morphological grades according to the recently described morphological classification of lumbar spinal stenosis, with DSCA values disclosed in half the assessed images, were used for evaluation. We provided a clinical scenario to accompany the images, which were shown to 142 responding physicians, mainly orthopaedic surgeons but also some neurosurgeons and others directly involved in treating patients with spinal disorders. As the primary outcome we used the number of respondents who would proceed to surgery for a given DSCA or morphological grade. Substantial agreement among the respondents was observed, with severe or extreme stenosis as defined by the morphological grade leading to surgery. This decision was not dependent on the number of years in practice, medical density or specialty. Disclosing the DSCA did not alter operative decision-making. In all, 40 respondents (29%) had prior knowledge of the morphological grading system, but their responses showed no difference from those who had not. This study suggests that the participants were less influenced by DSCA than by the morphological appearance of the dural sac. Classifying lumbar spinal stenosis according to morphology rather than surface measurements appears to be consistent with current clinical practice.
Resumo:
Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.
Resumo:
Cultured primary fetal cells from one organ donation could possibly meet the exigent and stringent technical aspects for development of therapeutic products. These cell types have fewer technological limitations for cellular proliferation capacity (simple culture conditions) and maintenance of differentiated phenotype, and they also have low probability for transmission of communicable diseases. Master and Working Cell Banks (MCB, WCB) can be obtained from one fetal organ donation, permitting multiple tissues (skin, bone, cartilage, muscle and intervertebral disc) to be processed in short periods of time with identical methods to assure a stringent tracing of the processes for the production of standardized therapeutic agents. Clinical use of biologics from embryo and fetal tissues is relatively new and current legislation and ethics have some differences between countries to date. In addition, specific cell delivery systems for each tissue type can be adapted to the clinical application. Since it is the intention that banked primary fetal cells enhance the prospective treatment of hundreds of thousands of patients with only one organ donation, it is imperative to show consistency, traceability and safety of the processes including donor tissue selection, cell banking, cell testing and growth of cells in out-scaling for the preparation of bio-engineered products for clinical application.
Resumo:
BACKGROUND: Comparative effectiveness research in spine surgery is still a rarity. In this study, pain alleviation and quality of life (QoL) improvement after lumbar total disc arthroplasty (TDA) and anterior lumbar interbody fusion (ALIF) were anonymously compared by surgeon and implant. METHODS: A total of 534 monosegmental TDAs from the SWISSspine registry were analyzed. Mean age was 42 years (19-65 years), 59% were females. Fifty cases with ALIF were documented in the international Spine Tango registry and used as concurrent comparator group for the pain analysis. Mean age was 46 years (21-69 years), 78% were females. The average follow-up time in both samples was 1 year. Comparison of back/leg pain alleviation and QoL improvement was performed. Unadjusted and adjusted probabilities for achievement of minimum clinically relevant improvements of 18 VAS points or 0.25 EQ-5D points were calculated for each surgeon. RESULTS: Mean preoperative back pain decreased from 69 to 30 points at 1 year (ØΔ 39pts) after TDA, and from 66 to 27 points after ALIF (ØΔ 39pts). Mean preoperative QoL improved from 0.34 to 0.74 points at 1 year (ØΔ 0.40pts). There were surgeons with better patient selection, indicated by lower adjusted probabilities reflecting worsening of outcomes if they had treated an average patient sample. ALIF had similar pain alleviation than TDA. CONCLUSIONS: Pain alleviation after TDA and ALIF was similar. Differences in surgeon's patient selection based on pain and QoL were revealed. Some surgeons seem to miss the full therapeutic potential of TDA by selecting patients with lower symptom severity.
Resumo:
OBJECTIVE: Depth of emotional processing has shown to be related to outcome across approaches to psychotherapy. Moreover, a specific emotional sequence has been postulated and tested in several studies on experiential psychotherapy (Pascual-Leone & Greenberg, 2007). This process-outcome study aims at reproducing the sequential model of emotional processing in psychodynamic psychotherapy for adjustment disorder and linking these variables with ultimate therapeutic outcome. METHOD: In this study, 32 patients underwent short-term dynamic psychotherapy. On the basis of reliable clinical change statistics, a subgroup (n = 16) presented with good outcome and another subgroup (n = 16) had a poor outcome in the end of treatment. The strongest alliance session of each case was rated using the observer-rated system Classification of Affective Meaning States. Reliability coefficients for the measure were excellent (κ = .82). RESULTS: Using 1 min as the fine-grained unit of analysis, results showed that the experience of fundamentally adaptive grief was more common in the in-session process of patients with good outcome, compared with those with poor outcomes (χ2 = 6.56, p = .01, d = 1.23). This variable alone predicted 19% of the change in depressive symptoms as measured by the Beck Depression Inventory at the end of treatment. Moreover, sequences of the original model were supported and related to outcome. CONCLUSIONS: These results are discussed within the framework of the sequential model of emotional processing and its possible relevance for psychodynamic psychotherapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Resumo:
Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.
Resumo:
OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.
Resumo:
Introduction: Quantitative measures of degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal or dural sac cross sectional area vary widely and do not correlate with clinical symptoms or results of surgical decompression. In an effort to improve quantification of stenosis we have developed a grading system based on the morphology of the dural sac and its contents as seen on T2 axial images. The grading comprises seven categories ranging form normal to the most severe stenosis and takes into account the ratio of rootlet/CSF content. Material and methods: Fifty T2 axial MRI images taken at disc level from twenty seven symptomatic lumbar spinal stenosis patients who underwent decompressive surgery were classified into seven categories by five observers and reclassified 2 weeks later by the same investigators. Intra- and inter-observer reliability of the classification were assessed using Cohen's and Fleiss' kappa statistics, respectively. Results: Generally, the morphology grading system itself was well adopted by the observers. Its success in application is strongly influenced by the identification of the dural sac. The average intraobserver Cohen's kappa was 0.53 ± 0.2. The inter-observer Fleiss' kappa was 0.38 ± 0.02 in the first rating and 0.3 ± 0.03 in the second rating repeated after two weeks. Discussion: In this attempt, the teaching of the observers was limited to an introduction to the general idea of the morphology grading system and one example MRI image per category. The identification of the dimension of the dural sac may be a difficult issue in absence of complete T1 T2 MRI image series as it was the case here. The similarity of the CSF to possibly present fat on T2 images was the main reason of mismatch in the assignment of the cases to a category. The Fleiss correlation factors of the five observers are fair and the proposed morphology grading system is promising.