5 resultados para Citrulline
em Université de Lausanne, Switzerland
Resumo:
Abstract Genetic studies have shown an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL), the key enzyme for glutathione (GSH) synthesis. The present study was aimed at analyzing the influence of a GSH dysregulation of genetic origin on plasma thiols (total cysteine, homocysteine, and cysteine-glycine) and other free amino acid levels as well as fibroblast cultures GSH levels. Plasma thiols levels were also compared between patients and controls. As compared with patients with a low-risk GCLC GAG TNR genotype, patients with a high-risk genotype, having an impaired GSH synthesis, displayed a decrease of fibroblast GSH and plasma total cysteine levels, and an increase of the oxidized form of cysteine (cystine) content. Increased levels of plasma free serine, glutamine, citrulline, and arginine were also observed in the high-risk genotype. Taken together, the high-risk genotypes were associated with a subgroup of schizophrenia characterized by altered plasma thiols and free amino acid levels that reflect a dysregulation of redox control and an increased susceptibility to oxidative stress. This altered pattern potentially contributes to the development of a biomarker profile useful for early diagnosis and monitoring the effectiveness of novel drugs targeting redox dysregulation in schizophrenia. Antioxid. Redox Signal. 15, 2003-2010.
Resumo:
Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured from dissociated telencephalic cortex of rat embryos to analyze the regulation of AS and AL genes in hyperammonemia. Using RNase protection assay and non-radioactive in situ hybridization on aggregate cryosections, we show that both AS and AL genes are induced in astrocytes but not in neurons of aggregates exposed to 5 mM NH4Cl. Our work suggests that the hyperammonemic brain might increase its recycling of citrulline to arginine.
Resumo:
Pseudomonas aeruginosa has a pair of distinct ornithine carbamoyltransferases. The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate. The catabolic ornithine carbamoyltransferase encoded by the arcB gene promotes the reverse reaction in vivo; although this enzyme can be assayed in vitro for citrulline synthesis, its unidirectionality in vivo is determined by its high concentration at half maximum velocity for carbamoylphosphate ([S]0.5) and high cooperativity toward this substrate. We have isolated mutant forms of catabolic ornithine carbamoyltransferase catalyzing the anabolic reaction in vivo. The corresponding arcB mutant alleles on a multicopy plasmid specifically suppressed an argF mutation of P. aeruginosa. Two new mutant enzymes were obtained. When methionine 321 was replaced by isoleucine, the mutant enzyme showed loss of homotropic cooperativity at physiological carbamoylphosphate concentrations. Substitution of glutamate 105 by lysine resulted in a partial loss of the sigmoidal response to increasing carbamoylphosphate concentrations. However, both mutant enzymes were still sensitive to the allosteric activator AMP and to the inhibitor spermidine. These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphosphate cooperativity: glutamate 105 (previously known to be important) and methionine 321. Mutational changes in either amino acid will affect the geometry of helix H2, which contains several residues required for carbamoylphosphate binding.
Resumo:
Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine into L-[3H]citrulline and the production of NO by intact cells was measured by nitrite and nitrate accumulation in culture supernatants. When expressing functional iNOS, U937 cells were capable of releasing high levels of NO. NO production was strictly dependent on supplementation of the culture medium with tetrahydrobiopterin (BH4) and was not modified by stimulation of the cells with different cytokines. These observations suggest that (1) human monocytic U937 cells contain all the cofactors necessary for NO synthesis, except BH4 and (2) the failure to detect NO in cytokine-stimulated untransfected U937 cells is not due to the presence of a NO-scavenging molecule within these cells nor to the destabilization of iNOS protein. DFGiNOS U937 cells represent a valuable human model to study the role of NO in immunity toward tumors and pathogens.
Resumo:
In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.