15 resultados para Chicks
em Université de Lausanne, Switzerland
Resumo:
Mothers can improve the quality of their offspring by increasing the level of certain components in their eggs. To examine whether or not mothers increase deposition of such components in eggs as a function of food availability, we food-supplemented black-legged kittiwake females (Rissa tridactyla) before and during egg laying and compared deposition of androgens and antibodies into eggs of first and experimentally induced replacement clutches. Food-supplemented females transferred lower amounts of androgens and antibodies into eggs of induced replacement clutches than did non-food-supplemented mothers, whereas first clutches presented no differences between treatments. Our results suggest that when females are in lower condition, they transfer more androgens and antibodies into eggs to facilitate chick development despite potential long-term costs for juveniles. Females in prime condition may avoid these potential long-term costs because they can provide their chicks with more and higher quality resources.
Resumo:
Insight into the function of sleep may be gained by studying animals in the ecological context in which sleep evolved. Until recently, technological constraints prevented electroencephalogram (EEG) studies of animals sleeping in the wild. However, the recent development of a small recorder (Neurologger 2) that animals can carry on their head permitted the first recordings of sleep in nature. To facilitate sleep studies in the field and to improve the welfare of experimental animals, herein, we test the feasibility of using minimally invasive surface and subcutaneous electrodes to record the EEG in barn owls. The EEG and behaviour of four adult owls in captivity and of four chicks in a nest box in the field were recorded. We scored a 24-h period for each adult bird for wakefulness, slow-wave sleep (SWS), and rapid-eye movement (REM) sleep using 4 s epochs. Although the quality and stability of the EEG signals recorded via subcutaneous electrodes were higher when compared to surface electrodes, the owls' state was readily identifiable using either electrode type. On average, the four adult owls spent 13.28 h awake, 9.64 h in SWS, and 1.05 h in REM sleep. We demonstrate that minimally invasive methods can be used to measure EEG-defined wakefulness, SWS, and REM sleep in owls and probably other animals.
Resumo:
In altricial birds post-fledging survival is usually positively related to nestling body mass. A large number of studies have shown that the latest hatched chick is the more likely to die, even if food is abundant. Here we suggest that ectoparasites may be a key factor in the evolution and the maintenance of the establishment of weight hierarchies within broods. We prepose the hypothesis that weight hierarchies within broods may be adaptive if the chick in poor condition is the one with the least efficient immune system within a nest. In this case parasites would preferentially feed on such a "tasty chick", because it would allow high reproductive rates for the parasites, without negatively affecting the survival of the other nestlings. This could prevent entire nest failure of the brood or allow the other chicks to grow more efficiently. This hypothesis was investigated in a colony of house martins Delichon urbica. We predicted that immunocompetence was positively correlated with body condition, and that nestlings dying before hedging should have lower immune responses when challenged with an antigen. T-cell immune response to an experimentally injected antigen was strongly positively related to body condition. Non-surviving chicks had low body condition and a weak immune response. The implications of these results are discussed in the context of the adaptive significance of hatching asynchrony.
Resumo:
Both reproduction and parasite defense can be costly, and an animal may face a trade-off between investing in offspring or in parasite defense. In contrast to the findings from nonexperimental studies that the poorly reproducing individuals are often the ones with high parasite loads, this life-history view predicts that individuals with high reproductive investment will show high parasite prevalence. Here we provide an experimental confirmation of a positive association between parental investment levels of male great tits Parus major and the prevalence of Plasmodium spp, a hematozoa causing malaria in various bird species. We manipulated brood size, measured feeding effort of both males and females, and assessed the prevalence of the hemoparasite from blood smears. In enlarged broods the males, but not the females, showed significantly higher rates of food provisioning to the chicks, and the rate of malarial infection was found to be more than double in male, but not female, parents of enlarged broods. The findings show that there may be a trade-off between reproductive effort and parasite defense of the host and also suggest a mechanism for the well documented trade-off between current reproductive effort and parental survival.
Resumo:
In many socially monogamous birds, both partners perform extrapair copulations (EPC). As this behaviour potentially inflicts direct costs on females, they are currently hypothesized to search for genetic benefits for descendants, either as 'good' or 'complementary' genes. Although these hypotheses have found some support, several studies failed to find any beneficial consequence of EPC, and whether this behaviour is adaptive to females is subject to discussion. Here, we test these two hypotheses in a natural population of blue tits by accounting for the effect of most parameters known to potentially affect extrapair fertilization. Results suggest that female body mass affected the type of extrapair genetic benefits obtained. Heavy females obtained extrapair fertilizations when their social male was of low quality (as reflected by sexual display) and produced larger extrapair than within-pair chicks. Lean females obtained extrapair fertilizations when their social mate was genetically similar, thereby producing more heterozygous extrapair chicks. Our results suggest that mating patterns may be condition-dependent.
Resumo:
1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food-supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season.
Resumo:
1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.
Resumo:
Agro-ecosystems have recently experienced dramatic losses of biodiversity due to more intensive production methods. In order to increase species diversity, agri-environment schemes provide subsidies to farmers who devote a fraction of their land to ecological compensation areas (ECA). Several studies have shown that invertebrate biodiversity is actually higher in ECA than in nearby intensively cultivated farmland. It remains poorly understood, however, to what extent ECA also favour vertebrates, such as small mammals and their predators, which would contribute to restore functioning food chains within revitalized agricultural matrices. We studied small mammal populations among eight habitat types - including wildflower areas, a specific ECA in Switzerland - and habitat selection (radiotracking) by the barn owl Tyto alba, one of their principal predators. Our prediction was that habitats with higher abundances of small mammals would be more visited by foraging Barn owls during the period of chicks' provisioning. Small mammal abundance tended to be higher in wildflower areas than in any other habitat type. Barn owls, however, preferred to forage in cereal fields and grassland. They avoided all types of crops other than cereals, as well as wildflower areas, which suggests that they do not select their hunting habitat primarily with respect to prey density. Instead of prey abundance, prey accessibility may play a more crucial role: wildflower areas have a dense vegetation cover, which may impede access to prey for foraging owls. The exploitation of wildflower areas by the owls might be enhanced by creating open foraging corridors within or around wildflower areas. Wildflower areas managed in that way might contribute to restore functioning food chains within agro-ecosystems.
Resumo:
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.
Resumo:
Although evidence is accumulating that mothers can transfer antibodies to their offspring, little is known about the consequences of such a transfer to the offspring immune system. Because maternal antibodies are effective only during a short period of time after their transfer to offspring, one hypothesis is that maternal antibodies provides a transitory antigen-specific protection to offspring, thus lessening the need for offspring to mount their own humoral immune response towards these specific antigens. In birds, this scenario predicts that offspring immune response towards a specific antigen is inhibited to a larger extent in hatchlings than in older nestlings. We tested this hypothesis in tawny owls Strix aluco by cross-fostering clutches between nests and then challenging siblings with a vaccine either two times (at 4- and 11-d-old) or only one time at 11-d-old to compare the strength of the humoral response between nestlings born from mothers with naturally high and low levels of antibodies against this vaccine. Because maternal antibodies are expected to be effective only during a short period of time after hatching, we predict that maternal antibodies should inhibit the immune response of nestlings vaccinated from the fourth day after hatching more than in nestlings vaccinated only at a later age. As expected, the inhibitory effect of maternal antibodies was stronger in nestlings vaccinated soon after hatching than in siblings injected at a later age. Therefore, in wild avian populations pre-hatching maternal effects may confer offspring with a transitory immune protection in the first days following hatching.
Resumo:
Nestling birds produced later in the season are hypothesized to be of poor quality with a low probability of survival and recruitment. In a Spanish population of house martins (Delichon urbica), we first compared reproductive success, immune responses and morphological traits between the first and the second broods. Second, we investigated the effects of an ectoparasite treatment and breeding date on the recapture rate the following year. Due probably to a reverse situation in weather conditions during the experiment, with more rain during rearing of the first brood, nestlings reared during the second brood were in better condition and had stronger immune responses compared with nestlings from the first brood. Contrary to other findings on house martins, we found a similar recapture rate for chicks reared during the first and the second brood. Furthermore, ectoparasitic house martin bugs had no significant effect on the recapture rate. Recaptured birds had similar morphology but higher immunoglobulin levels when nestlings compared with non-recaptured birds. This result implies that a measure of immune function is a better predictor of survival than body condition per se.
Resumo:
The first breeding records of the Bee-eater in canton de Vaud was recorded in a temporarily disused gravel-pit in the Venoge valley (W Switzerland). In 1996 the reproduction of a single pair failed after the eclosion of the chicks during a long period of uninterrupted rain. In 1997, probably the same pair returned and raised 3 fledglings. In 1998, 4 pairs bred raising 20 feldglings. The site is particularly rich with insects and birds: 12 bird species of the red data list breed in the site and surrounding area. However, it is threatened by state project: the gravel-pit is planned to be filled in the coming years. Its future management in relation to the preservation of the Bee-eater and the other bird species on the red data list is presented and discussed.
Resumo:
We tested the cross-amplification of 37 microsatellites in a population of starlings (Stumus vulgaris). Twenty-three of them amplified and five exhibited a large number of alleles per locus and high heterozygosity (on average: 14.6 alleles/locus and H. = 0.704). We assessed the occurrence of extra-pair paternity (EPP) and intraspecific brood parasitism GBP) in this population. The EPP rate was 16% to 18% offspring from 43% to 45% of nests. IBP was very variable between two successive years (14% to 27% chicks from 25% to 64% of clutches). These five polymorphic markers will be of potential use in studies of genetic diversity, population structure and reproductive strategy of this species.
Resumo:
Little is known about the maternal transfer of antibodies in natural host-parasite systems despite its possible evolutionary and ecological implications. In domestic animals, the maternal transfer of antibodies can enhance offspring survival via a temporary protection against parasites, but it can also interfere with the juvenile immune response to antigens. We tested the functional role of maternal antibodies in a natural population of a long-lived colonial seabird, the kittiwake (Rissa tridactyla), using a vaccine (Newcastle disease virus vaccine) to mimic parasite exposure combined with a cross-fostering design. We first investigated the role of prior maternal exposure on the interannual transmission of Ab to juveniles. We then tested the effect of these antibodies on the juvenile immune response to the same antigen. The results show that specific maternal antibodies were transferred to chicks 1 year after maternal exposure and that these antibodies were functional, i.e. they affected juvenile immunity. These results suggest that the role of maternal antibodies may depend on the timing and pattern of offspring exposure to parasites, along with the patterns of maternal exposure and the dynamics of her immune response. Overall, our approach underlines that although the transgenerational transfer of antibodies in natural populations is likely to have broad implications, the nature of these effects may vary dramatically among host-parasite systems, depending on the physiological mechanisms involved and the ecological context.
Resumo:
1. The effect of a haematophageous ectoparasite, the hen flea, on quality an number of offspring was experimentally investigated in the great tit. The experiment consisted of a controlled infestation of a random sample of nests with the parasitic flea and of a regular treatment of control nests with Microwaves in order to eliminate the naturally occurring fleas. 2. To assess the effects of fleas on variables related to offspring number, we considered the number of hatchlings and fledglings, the mortality between hatching and fledging, and the hatching and fledging success. For assessment of offspring quality, we measured body mass, tarsus and wing length, and calculated the nutritional condition of, nestlings as the ratio of body mass to tarsus length. A physiological variable, the haematocrit level, was also measured. 3. Hatching success and hatchling numbers did not differ between the two experimental groups. Offspring mortality between hatching and fledging was significantly higher in the infested broods (xBAR = 0.22 chicks dead per day) than in the parasite-free broods (xBAR = 0.07 dead per day). Fledging success was 83% in the parasite-free broods, but only 53% in the infested ones. The number of fledglings in infested broods (xBAR = 3.7 fledglings +/-2.1 SD) was significantly lower than in the parasite-free (xBAR = 4.9 +/- 1.1 SD) broods. 4. Body mass of chicks in the infested broods was significantly smaller than in the parasite-free broods both 14 days and 17 days after hatching. The chicks in the infested broods reached a significantly smaller tarsus length than the ones in the parasite-free broods. Close to fledging, the nutritional condition of chicks was significantly lower in infested broods. Haematocrit levels were significantly lower in the infested broods. 5. Brood size correlated differently with body mass and condition of chicks in infested and parasite-free nests. In parasite-free broods both body mass and condition of chicks at age 17 days, i.e. close to fledging, were significantly higher in small broods than in large ones. However, in the infested broods chicks were of the same body mass and condition in large as in small broods. Therefore, in parasite-free broods fitness can potentially be gained through offspring quality or number or both, whereas in infested broods it can be gained through offspring quantity only. In other words, a trade-off between quality and number of offspring is feasible only in the absence of the parasitic hen flea. 6. These results emphasize the need to study the effects of ectoparasites on ecological, behavioural and evolutionary traits of their bird hosts. A knowledge of these effects is essential for the understanding of population dynamics, behaviour and life-history traits of the hosts.