5 resultados para Change Impact
em Université de Lausanne, Switzerland
Resumo:
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown
Resumo:
BACKGROUND: Screening of peripheral atherosclerosis is increasingly used, but few trials have examined its clinical impact. We aimed to assess whether carotid plaque screening helps smokers to improve their health behaviors and cardiovascular risk factors. METHODS: We randomly assigned 536 smokers aged 40 to 70 years to carotid plaque ultrasonographic screening (US group) vs no screening (control group) in addition to individual counseling and nicotine replacement therapy for all participants. Smokers with at least 1 plaque received pictures of their plaques with a 7-minute structured explanation. The outcomes included biochemically validated smoking cessation at 12 months (primary outcome) and changes in cardiovascular risk factor levels and Framingham risk score. RESULTS: At baseline, participants (mean age, 51.1 years; 45.0% women) smoked an average of 20 cigarettes per day with a median duration of 32 years. The US group had a high prevalence of carotid plaques (57.9%). At 12 months, smoking cessation rates were high, but did not differ between the US and control groups (24.9% vs 22.1%; P = .45). In the US group, cessation rates did not differ according to the presence or absence of plaques. Control of cardiovascular risk factors (ie, blood pressure and low-density lipoprotein cholesterol and hemoglobin A(1c) levels in diabetic patients) and mean absolute risk change in Framingham risk score did not differ between the groups. The mean absolute risk change in Framingham risk score was +0.6 in the US group vs +0.3 in the control group (P = .56). CONCLUSION: In smokers, carotid plaque screening performed in addition to thorough smoking cessation counseling is not associated with increased rates of smoking cessation or control of cardiovascular risk factors. Trial Registration clinicaltrials.gov Identifier: NCT00548665.
Resumo:
Positive attitudes toward change (PATC) are an important current issue in public organizations facing profound financial and managerial reforms. This study aims to identify social and organizational antecedents of PATC. The investigated population is composed of middle managers working in Swiss public hospitals (N = 720), which are currently being confronted by major reforms. Partial mediation effects of organizational commitment (OC) in the relationships between independent variables and PATC are also controlled. The findings show that perceived social support (work relationships with colleagues and supervisors) as well as perceived organizational support (employee voice and participation, information and communication, work-life balance) are positively and significantly related to PATC. Stress perception is shown to have a negative impact on PATC. This article provides valuable contributions with respect to antecedents of attitudes toward change in a population of public middle managers.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.