4 resultados para Cervical dentine hypersensitivity
em Université de Lausanne, Switzerland
Resumo:
Metalworking fluid-associated hypersensitivity pneumonitis (MWF-HP) is a pulmonary disease caused by inhaling microorganisms present in the metalworking fluids used in the industrial sector. Mycobacterium immunogenum is the main etiological agent. Among the clinical, radiological and biological tools used for diagnosis, serological tests are important. The aim of this study was to identify immunogenic proteins in M. immunogenum and to use recombinant antigens for serological diagnosis of MWF-HP. Immunogenic proteins were detected by two-dimensional Western blot and candidate proteins were identified by mass spectrometry. Recombinant antigens were expressed in Escherichia coli and tested by enzyme-linked immunosorbent assay (ELISA) with the sera of 14 subjects with MWF-HP and 12 asymptomatic controls exposed to M. immunogenum. From the 350 spots visualized by two-dimensional gel electrophoresis with M. immunogenum extract, 6 immunogenic proteins were selected to be expressed as recombinant antigens. Acyl-CoA dehydrogenase antigen allowed for the best discrimination of MWF-HP cases against controls with an area under the receiver operating characteristics (ROC) curve of 0.930 (95% CI=0.820-1), a sensitivity of 100% and a specificity of 83% for the optimum threshold. Other recombinant antigens correspond to acyl-CoA dehydrogenase FadE, cytosol aminopeptidase, dihydrolipoyl dehydrogenase, serine hydroxymethyltransferase and superoxide dismutase. This is the first time that recombinant antigens have been used for the serodiagnosis of hypersensitivity pneumonitis. The availability of recombinant antigens makes it possible to develop standardized serological tests which in turn could simplify diagnosis, thus making it less invasive.
Resumo:
Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.