25 resultados para Cement shrinkage
em Université de Lausanne, Switzerland
Resumo:
Several mechanisms have been postulated as potentially involved in life-threatening complications during cemented surgery. In this study, we evaluated the role of anaphylaxis and pulmonary fat embolism in the pathophysiology of bone cement implantation syndrome in a series of fatal cases that underwent medicolegal investigations. Postmortem findings in these cases were compared with those obtained from individuals who died after other injuries and/or interventions and in which activated mast cells and pulmonary fat embolism were involved in the pathogenesis of death. Fifty subjects were selected including 6 individuals who had undergone cemented total hip arthroplasty and died intraoperatively, 32 subjects who died shortly after being involved in traffic accidents, 8 individuals who died shortly after the injection of contrast material, and 4 subjects who had undergone orthopedic surgery and died postoperatively. Massive pulmonary fat embolism was determined to be the cause of death in all the 6 subjects who died intraoperatively as well as the main cause of death in traffic-road victims with rapid respiratory function deterioration. Mast cell activation was identified exclusively in the group of subjects who died shortly after contrast material administration. Massive pulmonary fat embolism appears to be the most important factor responsible for severe cardiorespiratory function deterioration during cemented arthroplasty. Cardiac comorbidities can also significantly influence the severity of intraoperative complications, thus corroborating the hypothesis of a multifactorial model in the pathogenesis of bone cement implantation syndrome.
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.
Resumo:
INTRODUCTION: This is a single, level 1 trauma centre, prospective consecutive patient series with intramedullary infection in the presence of unstable tibial fracture treated using the Kirschner wire-reinforced, antibiotic cement nail. PATIENTS AND METHODS: A total of 10 consecutive patients (eight males and two females) with a mean age of 42 years (range, 20-59) suffering from infection after intramedullary nailing for tibial fracture, admitted during a period of 4 years, were included. An antibiotic cement-coated nail, handmade at the time of surgery, was implanted in all patients. This was followed by a standardised 6-week treatment protocol, extraction of the nail and definitive fixation. RESULTS: At 6 years of follow-up, infection eradication and bony union were possible in all of the patients. No further infection treatment was necessary; however, all of our patients underwent additional procedures (mean: four additional procedures per patient) for cosmetic or other non-infectious reasons (bone grafting, muscle flaps, etc.). CONCLUSIONS: The antibiotic cement-coated nail seems to be an effective treatment for intramedullary infections of the fractured tibia.
Resumo:
Daptomycin is a promising candidate for local treatment of bone infection due to its activity against multi-resistant staphylococci. We investigated the activity of antibiotic-loaded PMMA against Staphylococcus epidermidis biofilms using an ultra-sensitive method bacterial heat detection method (microcalorimetry). PMMA cylinders loaded with daptomycin alone or in combination with gentamicin or PEG600, vancomycin and gentamicin were incubated with S. epidermidis-RP62A in tryptic soy broth (TSB) for 72h. Cylinders were thereafter washed and transferred in microcalorimetry ampoules pre-filled with TSB. Bacterial heat production, proportional to the quantity of biofilm on the PMMA, was measured by isothermal microcalorimetry at 37°C. Heat detection time was considered time to reach 20μW. Experiments were performed in duplicate. The heat detection time was 5.7-7.0h for PMMA without antibiotics. When loaded with 5% of daptomycin, vancomycin or gentamicin, detection times were 5.6-16.4h, 16.8-35.7h and 4.7-6.2h, respectively. No heat was detected when 5% gentamicin or 0.5% PEG600 was added to the daptomycin-loaded PMMA. The study showed that vancomycin was superior to daptomycin and gentamicin in inhbiting staphylococcal adherence in vitro. However, PMMA loaded with daptomycin combined with gentamicin or PEG600 completely inhibited S. epidermidis-biofilm formation. PMMA loaded with these combinations may represent effective strategies for local treatment in the presence of multi-resistant staphylococci.
Resumo:
After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.
Resumo:
BACKGROUND: Rectal and pararectal gastrointestinal stromal tumors (GISTs) are rare. The optimal management strategy for primary localized GISTs remains poorly defined. METHODS: We conducted a retrospective analysis of 41 patients with localized rectal or pararectal GISTs treated between 1991 and 2011 in 13 French Sarcoma Group centers. RESULTS: Of 12 patients who received preoperative imatinib therapy for a median duration of 7 (2-12) months, 8 experienced a partial response, 3 had stable disease, and 1 had a complete response. Thirty and 11 patients underwent function-sparing conservative surgery and abdominoperineal resection, respectively. Tumor resections were mostly R0 and R1 in 35 patients. Tumor rupture occurred in 12 patients. Eleven patients received postoperative imatinib with a median follow-up of 59 (2.4-186) months. The median time to disease relapse was 36 (9.8-62) months. The 5-year overall survival rate was 86.5%. Twenty patients developed local recurrence after surgery alone, two developed recurrence after resection combined with preoperative and/or postoperative imatinib, and eight developed metastases. In univariate analysis, the mitotic index (≤5) and tumor size (≤5 cm) were associated with a significantly decreased risk of local relapse. Perioperative imatinib was associated with a significantly reduced risk of overall relapse and local relapse. CONCLUSIONS: Perioperative imatinib therapy was associated with improved disease-free survival. Preoperative imatinib was effective. Tumor shrinkage has a clear benefit for local excision in terms of feasibility and function preservation. Given the complexity of rectal GISTs, referral of patients with this rare disease to expert centers to undergo a multidisciplinary approach is recommended.
Resumo:
Environmental research in earth sciences is focused on the geosphere, i.e. (1) waters and sediments of rivers, lakes and oceans, and (2) soils and underlying shallow rock formations,both water-unsaturated and -saturated. The subsurface is studied down to greater depths at sites where waste repositories or tunnels are planned and mining activities exist. In recent years, earth scientists have become more and more involved in pollution problems related to their classical field of interest, e.g. groundwater, ore deposits, or petroleum and non-metal natural deposits (gravel, clay, cement precursors). Major pollutants include chemical substances, radioactive isotopes and microorganisms. Mechanisms which govern the transport of pollutants are of physical, chemical (dissolution, precipitation, adsorption), or microbiological (transformation) nature. Land-use planning must reflect a sustainable development and sound scientific criteria. Today's environmental pollution requires working teams with an interdisciplinary background in earth sciences, hydrology, chemistry, biology, physics as well as engineering. This symposium brought together for the first time in Switzerland earth and soil scientists, physicists and chemists, to present and discuss environmental issues concerning the geosphere.
Resumo:
Aging is ubiquitous to the human condition. The MRI correlates of healthy aging have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analyzing this region. By utilizing a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based morphometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative changes across healthy adults between 19 and 75 years were characterized. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetization transfer and increase in proton density (PD), accounting for the previously described "midbrain shrinkage." Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterized, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterized by early, pre-clinical involvement of the brainstem, such as Parkinson's and Alzheimer's diseases.
Resumo:
RésuméCette thèse traite de l'utilisation des concepts de Symbiose Industrielle dans les pays en développement et étudie le potentiel de cette stratégie pour stimuler un développement régional durable dans les zones rurales d'Afrique de l'Ouest. En particulier, lorsqu'une Symbiose Industrielle est instaurée entre une usine et sa population alentour, des outils d'évaluation sont nécessaires pour garantir que le projet permette d'atteindre un réel développement durable. Les outils existants, développés dans les pays industrialisés, ne sont cependant pas complètement adaptés pour l'évaluation de projets dans les pays en développement. En effet, les outils sont porteurs d'hypothèses implicites propres au contexte socio-économique dans lequel ils ont été conçus.L'objectif de cette thèse est de développer un cadre méthodologique pour l'évaluation de la durabilité de projets de Symbiose Industrielle dans les pays en développement.Pour ce faire, je m'appuie sur une étude de cas de la mise en place d'une Symbiose Industrielle au nord du Nigéria, à laquelle j'ai participé en tant qu'observatrice dès 2007. AshakaCem, une usine productrice de ciment du groupe Lafarge, doit faire face à de nombreuses tensions avec la population rurale alentour. L'entreprise a donc décidé d'adopter une nouvelle méthode inspirée des concepts de Symbiose Industrielle. Le projet consiste à remplacer jusqu'à 10% du carburant fossile utilisé pour la cuisson de la matière crue (calcaire et additifs) par de la biomasse produite par les paysans locaux. Pour ne pas compromettre la fragile sécurité alimentaire régionale, des techniques de lutte contre l'érosion et de fertilisation naturelle des sols sont enseignées aux paysans, qui peuvent ainsi utiliser la culture de biomasse pour améliorer leurs cultures vivrières. A travers cette Symbiose Industrielle, l'entreprise poursuit des objectifs sociaux (poser les bases nécessaires à un développement régional), mais également environnementaux (réduire ses émissions de CO2 globales) et économiques (réduire ses coûts énergétiques). Elle s'ancre ainsi dans une perspective de développement durable qui est conditionnelle à la réalisation du projet.A travers l'observation de cette Symbiose et par la connaissance des outils existants je constate qu'une évaluation de la durabilité de projets dans les pays en développement nécessite l'utilisation de critères d'évaluation propres à chaque projet. En effet, dans ce contexte, l'emploi de critères génériques apporte une évaluation trop éloignée des besoins et de la réalité locale. C'est pourquoi, en m'inspirant des outils internationalement reconnus comme l'Analyse du Cycle de Vie ou la Global Reporting Initiative, je définis dans cette thèse un cadre méthodologique qui peut, lui, être identique pour tous les projets. Cette stratégie suit six étapes, qui se réalisent de manière itérative pour permettre une auto¬amélioration de la méthodologie d'évaluation et du projet lui-même. Au cours de ces étapes, les besoins et objectifs en termes sociaux, économiques et environnementaux des différents acteurs sont déterminés, puis regroupés, hiérarchisés et formulés sous forme de critères à évaluer. Des indicateurs quantitatifs ou qualitatifs sont ensuite définis pour chacun de ces critères. Une des spécificités de cette stratégie est de définir une échelle d'évaluation en cinq graduations, identique pour chaque indicateur, témoignant d'un objectif totalement atteint (++) ou pas du tout atteint (--).L'application de ce cadre méthodologique à la Symbiose nigériane a permis de déterminer quatre critères économiques, quatre critères socio-économiques et six critères environnementaux à évaluer. Pour les caractériser, 22 indicateurs ont été définis. L'évaluation de ces indicateurs a permis de montrer que le projet élaboré atteint les objectifs de durabilité fixés pour la majorité des critères. Quatre indicateurs ont un résultat neutre (0), et un cinquième montre qu'un critère n'est pas atteint (--). Ces résultats s'expliquent par le fait que le projet n'en est encore qu'à sa phase pilote et n'a donc pas encore atteint la taille et la diffusion optimales. Un suivi sur plusieurs années permettra de garantir que ces manques seront comblés.Le cadre méthodologique que j'ai développé dans cette thèse est un outil d'évaluation participatif qui pourra être utilisé dans un contexte plus large que celui des pays en développement. Son caractère générique en fait un très bon outil pour la définition de critères et indicateurs de suivi de projet en terme de développement durable.SummaryThis thesis examines the use of industrial symbiosis in developing countries and studies its potential to stimulate sustainable regional development in rural areas across Western Africa. In particular, when industrial symbiosis is instituted between a factory and the surrounding population, evaluation tools are required to ensure the project achieves truly sustainable development. Existing tools developed in industrialized countries are not entirely suited to assessing projects in developing countries. Indeed, the implicit hypotheses behind such tools reflect the socioeconomic context in which they were designed. The goal of this thesis is to develop a methodological framework for evaluating the sustainability of industrial symbiosis projects in developing countries.To accomplish this, I followed a case study about the implementation of industrial symbiosis in northern Nigeria by participating as an observer since 2007. AshakaCem, a cement works of Lafarge group, must confront many issues associated with violence committed by the local rural population. Thus, the company decided to adopt a new approach inspired by the concepts of industrial symbiosis.The project involves replacing up to 10% of the fossil fuel used to heat limestone with biomass produced by local farmers. To avoid jeopardizing the fragile security of regional food supplies, farmers are taught ways to combat erosion and naturally fertilize the soil. They can then use biomass cultivation to improve their subsistence crops. Through this industrial symbiosis, AshakaCem follows social objectives (to lay the necessary foundations for regional development), but also environmental ones (to reduce its overall CO2 emissions) and economical ones (to reduce its energy costs). The company is firmly rooted in a view of sustainable development that is conditional upon the project's execution.By observing this symbiosis and by being familiar with existing tools, I note that assessing the sustainability of projects in developing countries requires using evaluation criteria that are specific to each project. Indeed, using generic criteria results in an assessment that is too far removed from what is needed and from the local reality. Thus, by drawing inspiration from such internationally known tools as Life Cycle Analysis and the Global Reporting Initiative, I define a generic methodological framework for the participative establishment of an evaluation methodology specific to each project.The strategy follows six phases that are fulfilled iteratively so as to improve the evaluation methodology and the project itself as it moves forward. During these phases, the social, economic, and environmental needs and objectives of the stakeholders are identified, grouped, ranked, and expressed as criteria for evaluation. Quantitative or qualitative indicators are then defined for each of these criteria. One of the characteristics of this strategy is to define a five-point evaluation scale, the same for each indicator, to reflect a goal that was completely reached (++) or not reached at all (--).Applying the methodological framework to the Nigerian symbiosis yielded four economic criteria, four socioeconomic criteria, and six environmental criteria to assess. A total of 22 indicators were defined to characterize the criteria. Evaluating these indicators made it possible to show that the project meets the sustainability goals set for the majority of criteria. Four indicators had a neutral result (0); a fifth showed that one criterion had not been met (--). These results can be explained by the fact that the project is still only in its pilot phase and, therefore, still has not reached its optimum size and scope. Following up over several years will make it possible to ensure these gaps will be filled.The methodological framework presented in this thesis is a highly effective tool that can be used in a broader context than developing countries. Its generic nature makes it a very good tool for defining criteria and follow-up indicators for sustainable development.
Resumo:
Purpose Third generation anatomic total shoulder prostheses offer a wide range of adaptability (size, thickness, retroversion and offset of the humeral head, cervico-diaphyseal angle) in order to reproduce anatomy and biomechanics of the shoulder as normal as possible. The large variability of the implants may also induce malposition. Our goal was to analyse the consequences of a humeral head malposition, which is one of the most frequent placement errors. Material and Methods A 3D finite element model of the glenohumeral joint, including the rotator cuff muscles and the deltoid, was used with the Aequalis anatomic prosthesis. Active abduction was simulated. Three humeral head placements were compared : anatomic positioning (A), 5 mm inferior positioning (B), 5 mm superior positioning (C). The effect of humeral head malposition was evaluated through the following quantities : the range of motion free of impingements, the glenohumeral contact pattern, and the stress within the polyethylene and the cement. Results Inferior positioning (B) of the humeral head produced a superior impingement before 90° of abduction, an inferior eccentric contact point on the glenoid, and 165% increase of cement stress. Superior positioning (C) of the humeral head produced a postero-superior eccentric contact point on the glenoid, 300% increase of glenohumeral contact pressure, 450% increase of polyethylene stress, and 207% increase of cement stress. Conclusion Malposition of the humeral head of anatomic prostheses induces biomechanical consequences that may preclude the glenoid survival. Particular attention must be paid to reproduce the humeral anatomy as normal as possible.
Resumo:
BACKGROUND: Blood pressure (BP) response after renal denervation (RDN) is highly variable. Besides baseline BP, no reliable predictors of response have been consistently identified. The differences between patients showing a major BP decrease after RDN vs. nonresponders have not been studied so far. AIM AND METHODS: We identified extreme BP responders (first quintile) and nonresponders (fifth quintile) to RDN defined according to office or 24-h ambulatory BP in the European Network COordinating research on Renal Denervation database (n = 109) and compared the baseline characteristics and BP changes 6 months after RDN in both subsets. RESULTS: In extreme responders defined according to ambulatory BP, baseline BP and BP changes 6 months after RDN were similar for office and out-of-the office BP. In contrast, extreme responders defined according to office BP were characterized by a huge white-coat effect at baseline, with dramatic shrinkage at 6 months. Compared with nonresponders, extreme responders defined according to office BP were more frequently women, had higher baseline office--but not ambulatory--BP, and higher estimated glomerular filtration rate (eGFR). In contrast, when considering ambulatory BP decrease to define extreme responders and nonresponders, the single relevant difference between both subsets was baseline ambulatory BP. CONCLUSION: This study suggests a major overestimation of BP response after RDN in extreme responders defined according to office, but not ambulatory BP. The association of lower eGFR with poor response to RDN is consistent with our previous analysis. The increased proportion of women in extreme responders may reflect sex differences in drug adherence.
Resumo:
X-ray microtomography has become a new tool in earth sciences to obtain non-destructive 3D-image data from geological objects in which variations in mineralogy, chemical composition and/or porosity create sufficient x-ray density contrasts.We present here first, preliminary results of an application to the external and internal morphology of Permian to Recent Larger Foraminifera. We use a SkyScan-1072 high-resolution desk-top micro-CT system. The system has a conical x-ray source with a spot size of about 5µm that runs at 20-100kV, 0-250µA, resulting in a maximal resolution of 5µm. X-ray transmission images are captured by a scintillator coupled via fibre optics to a 1024x1024 pixel 12-bit CCD. The object is placed between the x-ray source and the scintillator on a stub that rotates 360°around its vertical axis in steps as small as 0.24 degrees. Sample size is limited to 2 cm due to the absorption of geologic material for x-rays. The transmission images are back projected using a Feldkamp algorithm into a vertical stack of up to 1000 1Kx1K images that represent horizontal cuts of the object. This calculation takes 2 to several hours on a Double-Processor 2.4GHz PC. The stack of images (.bmp) can be visualized with any 3D-imaging software, used to produce cuts of Larger Foraminifera. Among other applications, the 3D-imaging software furnished by SkyScan can produce 3D-models by defining a threshold density value to distinguish "solid" from "void. Several models with variable threshold values and colors can be imbricated, rotated and cut together. The best results were obtained with microfossils devoid of chamber-filling cements (Permian, Eocene, Recent). However, even slight differences in cement mineralogy/composition can result in surprisingly good x-ray density contrasts.X-ray microtomography may develop into a powerful tool for larger microfossils with a complex internal structure, because it is non-destructive, requires no preparation of the specimens, and produces a true 3D-image data set. We will use these data sets in the future to produce cuts in any direction to compare them with arbitrary cuts of complex microfossils in thin sections. Many groups of benthic and planktonic foraminifera may become more easily determinable in thin section by this way.
Resumo:
Malignant gliomas, notably glioblastoma are among the most vascularized and angiogenic cancers, and microvascular proliferation is one of the hallmarks for the diagnosis of glioblastoma. Angiogenesis is regulated by a balance of pro- and antiangiogenic signals; overexpression of VEGF and activation of its receptors, most notable VEGFR-2 and -3, results in endothelial cell proliferation and leaky vasculature. Heterogeneous perfusion and oxygenation, peritumoral edema and increased interstitial pressure are the consequence. Both endothelial and tumour cells are strongly dependent on integrin-mediated adhesion for cell proliferation, survival, migration and invasion.Strategies aiming at inhibition of cell signaling and angiogenesis, including integrin inhibitors, have been clinically investigated in gliomas over the last 5 years. Radiological responses, a decreased requirement of corticosteroids and temporary improvement in performance status have repeatedly been observed. Toxicity was mild-moderate and manageable, notably there was no evidence for a substantially increased incidence of intracranial bleeding. However definitive comparative (randomized !) investigation has failed to demonstrate improved outcome with singleagent inhibition of EGFR, or PDGFR or VEGF/VEGFRs pathways in recurrent glioblastoma. Definitive phase III trials combining the anti- VEGF monoclonal antibody bevacizumab, or cilengitide, a peptidic integrininhibitor, together with temozolomide and radiotherapy are ongoing (accrual completed).The integration of anti-angiogenic strategies in the management of malignant glioma also poses entirely new challenges in patient management: 1) Many agents are known for increasing the risk of thrombosis, embolism and intracranial bleeding. 2) Evaluation of treatment efficacy is difficult and new biomarkers of activity, including functional, metabolic or molecular imaging techniques are urgently needed. Normalization of vasculature leads to decrease in contrast enhancement without necessarily reflecting tumour shrinkage. Tumour heterogeneity, putative prognostic or predictive factors require early controlled trials, novel trial designs and endpoints.3) Activation of alternate pathways and tumour escape mechanisms may require combination of multiple agents, which is often not feasible due to regulatory restrictions and potential complex toxicities. Emerging clinical and experimental evidence suggests that anti-angiogenic drugs might need to be combined with drugs targeting tumour adaptive mechanisms in addition to cytotoxic chemotherapy and irradiation for a maximal antitumour effect.