870 resultados para Cell Aggregation -- drug effects

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of subchronical applications of the mycotoxin Fumonisin B1 (FB1) were analyzed in vitro, using aggregating cell cultures of fetal rat telencephalon as a model. As cells in the aggregates developed from an immature state to a highly differentiated state, with synapse and compact myelin formation, it was possible to study the effects of FB1 at different developmental stages. The results showed that FB1 did not cause cell loss and it had no effects on neurons. However it decreased strongly the total content of myelin basic protein, the main constituent of the myelin sheath, during the myelination period (DIV 18-28). The loss of myelin was not accompanied by a loss of oligodendrocytes, the myelinating cells. However FB1 had effects on the maturation of oligodendrocytes, as revealed by a decrease in the expression of galactocerebroside, and on the compaction of myelin, as shown by a reduction of the expression of the mnyelin/oligodendrocyte glycoprotein MOG. The content of the cytoskeletal component glial fibrillary acidic protein (GFAP) was decreased in differentiated astrocytes, exclusively, while neurons were not affected by 40 microM of FB1 applied continuously for 10 days. In summary, FB1 selectively affected glial cells. In particular, FB1 delayed oligodendrocyte development and impaired myelin formation and deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maturation of astrocytes, neurons, and oligodendrocytes was studied in serum-free aggregating cell cultures of fetal rat telencephalon by an immunocytochemical approach. Cell type-specific immunofluorescence staining was examined by using antibodies directed against glial fibrillary acidic protein (GFAP) and vimentin, two astroglial markers; neuron-specific enolase (NSE) and neurofilament (NF), two neuronal markers, and galactocerebroside (GC), an oligodendroglial marker. It was found that the cellular maturation in aggregates is characterized by distinct developmental increases in immunoreactivity for GFAP, vimentin, NSE, NF, and GC, and by a subsequent decrease of vimentin-positive structures in more differentiated cultures. These findings are in agreement with observations in vivo, and they corroborate previous biochemical studies of this histotypic culture system. Treatment of very immature cultures with a low dose of epidermal growth factor (EGF, 5 ng/ml) enhanced the developmental increase in GFAP, NSE, NF and GC immunoreactivity, suggesting an acceleration of neuronal and glial maturation. In addition, EGF was found to alter the cellular organization within the aggregates, presumably by influencing cell migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triiodothyronine (30 nM) added to serum-free cultures of mechanically dissociated re-aggregating fetal (15-16 days gestation) rat brain cells greatly increased the enzymatic activity of choline acetyltransferase and acetylcholinesterase throughout the entire culture period (33 days), and markedly accelerated the developmental rise of glutamic acid decarboxylase specific activity. The enhancement of choline acetyltransferase and acetylcholinesterase specific activities in the presence of triiodothyronine was even more pronouned in cultures of telencephalic cells. If triiodothyronine treatment was restricted to the first 17 culture days, the level of choline acetyltransferase specific activity at day 33 was 84% of that in chronically treated cultures and 270% of that in cultures receiving triiodothyronine between days 17 and 33, indicating that relatively undifferentiated cells were more responsive to the hormone. Triiodothyronine had no apparent effect on the incorporation of [3H]thymidine at day 5 or on the total DNA content of cultures, suggesting that cellular differentiation, rather than proliferation was affected by the hormone. Our findings in vitro are in good agreement with many observations in vivo, suggesting that rotation-mediated aggregating cell cultures of fetal rat brain provide a useful model to study thyroid hormone action in the developing brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a marked, rapid, and sustained increase in the activity of the astrocyte-specific enzyme glutamine synthetase (GS). This effect was accompanied by a small increase in RNA synthesis and a progressive reduction in DNA synthesis. Only mitotically active cultures were responsive to PMA treatments. Since in aggregate cultures astrocytes are the preponderant cell type, both in number and mitotic activity, it can be concluded that PMA induces and/or enhances the terminal differentiation of astrocytes. The developmental expression of GS was also greatly stimulated by mezerein, a potent nonphorbol tumor promoter, but not by 4 alpha-phorbol 12,13-didecanoate, a nonpromoting phorbol ester. Since both tumor promoters, PMA and mezerein, are potent and specific activators of C-kinase, it is suggested that C-kinase plays a regulatory role in the growth and differentiation of normal astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine growth hormone (bGH) and epidermal growth factor (EGF) increased the activity of ornithine decarboxylase (ODC) in brain cell aggregates cultured in a serum-free chemically defined medium. ODC is considered as a marker of cell growth and differentiation. The effect of bGH and EGF on myelination was investigated by measuring two myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). EGF treatment at days 2 and 5 caused a dose-dependent increase of both myelin markers at culture day 12. This increase could still be observed at culture day 19, indicating a prolonged action of EGF. The continual presence of bGH in the culture medium produced a large accumulation of MBP at day 19. This effect was dose-dependent and required the presence of triiodothyronine (T3). In contrast, the effect of bGH on CNP activity did not require the presence of T3. This is the first report showing a direct effect of bGH on CNS myelination in vitro and of EGF on both MBP accumulation and ODC activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.