31 resultados para Caudal Autotomy
em Université de Lausanne, Switzerland
Resumo:
Dans le cadre du XVe colloque annuel du Groupe d'Etude Pratiques sociales et théories de l'Université de Lausanne consacré au thème de l'animalité et de l'humanité en référence à A. Portmann, l'A. étudie l'analyse des structures particulières du pôle céphalique et caudal chez les vertébrés supérieurs, développée par le biologiste suisse dans son ouvrage intitulé «La forme animale» (1959), d'une part, et examine quelques nouveaux paradigmes concernant les couleurs des robes et les testicules chez les oiseaux et les mammifères, qui ont été établis depuis à leur sujet, d'autre part
Resumo:
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647-672, 2013.
Resumo:
The elucidation of mechanisms underlying telencephalic neural development has been limited by the lack of knowledge regarding the molecular and cellular aspects of the ganglionic eminence (GE), an embryonic structure that supplies the brain with diverse sets of GABAergic neurons. Here, we report a comprehensive transcriptomic analysis of this structure including its medial (MGE), lateral (LGE) and caudal (CGE) subdivisions and its temporal dynamics in 12.5 to 16 day-old rat embryos. Surprisingly, comparison across subdivisions showed that CGE gene expression was the most unique providing unbiased genetic evidence for its differentiation from MGE and LGE. The molecular signature of the CGE comprised a large set of genes, including Rwdd3, Cyp26b1, Nr2f2, Egr3, Cpta1, Slit3, and Hod, of which several encode cell signaling and migration molecules such as WNT5A, DOCK9, VSNL1 and PRG1. Temporal analysis of the MGE revealed differential expression of unique sets of cell specification and migration genes, with early expression of Hes1, Lhx2, Ctgf and Mdk, and late enrichment of Olfm3, SerpinE2 and Wdr44. These GE profiles reveal new candidate regulators of spatiotemporally governed GABAergic neuronogenesis.
Resumo:
Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Resumo:
Abstract Right hemispheric stroke aphasia (RHSA) rarely occurs in right- or left-handed patients with their language representation in right hemisphere (RH). For right-handers, the term crossed aphasia is used. Single cases, multiple cases reports, and reviews suggest more variable anatomo-clinical correlations. We included retrospectively from our stroke data bank 16 patients (right- and left-handed, and ambidextrous) with aphasia after a single first-ever ischemic RH stroke. A control group was composed of 25 successive patients with left hemispheric stroke and aphasia (LHSA). For each patient, we analyzed four modalities of language (spontaneous fluency, naming, repetition, and comprehension) and recorded eventual impairment: (1) on admission (hyperacute) and (2) between day 3 and 14 (acute). Lesion volume and location as measured on computed tomography (CT) and magnetic resonance imaging (MRI) were transformed into Talairach stereotaxic space. Nonparametric statistics were used to compare impaired/nonimpaired patients. Comprehension and repetition were less frequently impaired after RHSA (respectively, 56% and 50%) than after LHSA (respectively, 84% and 80%, P = 0.05 and 0.04) only at hyperacute phase. Among RHSA, fewer left-handers/ambidextrous than right-handers had comprehension disorders at second evaluation (P = 0.013). Mean infarct size was similar in RHSA and LHSA with less posterior RHSA lesions (caudal to the posterior commissure). Comprehension and repetition impairments were more often associated with anterior lesions in RHSA (Fisher's exact test, P < 0.05). Despite the small size of the cohort, our findings suggest increased atypical anatomo-functional correlations of RH language representation, particularly in non-right-handed patients. Rapport de synthèse : Des aphasies secondaires à un accident vasculaire ischémique cérébral (AVC) hémisphérique droit sont rarement rencontrées chez des patients droitiers ou gauchers avec une représentation du langage dans l'hémisphère droit. Chez les droitiers, on parle d'aphasie croisée. Plusieurs études sur le sujet ont suggéré des corrélations anatomocliniques plus variables. Dans notre étude, nous avons inclus rétrospectivement, à partir d'une base de données de patients avec un AVC, seize patients (droitiers, gauchers et ambidextres) souffrant d'une aphasie suite à un premier et unique AVC ischémique hémisphérique droit. Un groupe contrôle est composé de vingt-cinq patients successifs avec une aphasie suite à un AVC ischémique hémisphérique gauche. Pour chaque patient, nous avons analysé quatre modalités de langage, à savoir la fluence spontanée, la dénomination, la répétition et la compréhension et leur éventuelle atteinte à deux moments distincts : 1) à l'admission (phase hyperaiguë) et 2) entre le 3e et le 14e jour (phase aiguë). Le volume et la localisation de la lésion mesurés, soit sur un CT-scanner soit sur une imagerie par résonance magnétique cérébrale, ont été analysés à l'aide de l'échelle stéréotaxique de Talairach. Des statistiques non paramétriques ont été utilisées pour comparer les patients atteints et non atteints. . La compréhension et la répétition étaient moins souvent atteintes, seulement en phase hyperaiguë, après une aphasie suite à un AVC hémisphérique droit (resp. 56% et 50%) plutôt que gauche (resp. 84 % et 80%, p= 0.05 et 0.04). Parmi les aphasies suite à un AVC ischémique hémisphérique droit, moins de gauchers et d'ambidextres que de droitiers avaient des troubles de la compréhension lors de la seconde évaluation (p=0.013}. La .taille moyenne de la zone infarcie était semblable entre les aphasies droites et gauches, avec moins de lésions postérieures (caudale à la commissure postérieure) lors des aphasies droites. Les troubles de la répétition et de la compréhension étaient plus souvent associés à des lésions antérieures lors d'aphasie droite. (Fischer's exact test, p>0.05). Malgré la petite taille de notre cohorte de patients, ces résultats suggèrent une augmentation des corrélations anatomocliniques atypiques lors d'une représentation du langage dans l'hémisphère droit, surtout chez les patients non droitiers.
Resumo:
The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.
Resumo:
Purpose: To evaluate the use of high frequency jet ventilation (HFJV) in patients undergoing percutanous thermal ablation procedures.Materials: From may to september 2011 patients with lung, liver or kidney tumors suitable for percutanous thermal ablation were prospectively enrolled to be treated under general anesthesia using HFJV instead of conventional positive pressure ventilation (PPV). Our primary endpoint was feasability of HFJV during percutanous ablation, our secondary endpoints were assessment of breathing related movements by image fusion (CT/US), precision and ease of needle placement by number of CT aquisition/needle reposition and procedure related complications.Results: Twenty-nine patients (21 males, 8 females mean age 66.2 years) with 30 liver tumors, 1 kidney tumors and 6 lung tumors were included. Tumor ablation was performed by radiofrequency (RFA) in 26 cases, microwaves ( MWA) in 2 and cryoablation (CRA) in 1. The ablation procedure could be completed under HFJV in 22 patients. In 2 patients HFVJ had to be stopped in favor of PPV because the tumor was better seen under PPV. HFJV was not performed in 5. Breathing related movements of the target lesion in the cranio-caudal direction as estimated by image fusion were always inferior to 5mm compared to 20mm when patients are under PPV. Needle placement was straightforward under CT as well as US. No patient needed needle repositionning before ablation. We did not observe any HFJV related complications.Conclusions: HFJV significantly reduces breathing movements of target lesion during percutaneous ablation procedures. It does not seem to cause any particular complication. However in some cases such as tumors located at the base of the lungs or in the dome of the liver, the target may be best seen under PPV.
Resumo:
Our objective was to establish the age-related 3D size of maxillary, sphenoid, and frontal sinuses. A total of 179 magnetic resonance imaging (MRI) of children under 17 years (76 females, 103 males) were included and sinuses were measured in the three axes. Maxillary sinuses measured at birth (mean+/-standard deviation) 7.3+/-2.7 mm length (or antero-posterior)/4.0+/-0.9 mm height (or cranio-caudal)/2.7+/-0.8 mm width (or transverse). At 16 years old, maxillary sinus measured 38.8+/-3.5 mm/36.3+/-6.2 mm/27.5+/-4.2 mm. Sphenoid sinus pneumatization starts in the third year of life after conversion from red to fatty marrow with mean values of 5.8+/-1.4 mm/8.0+/-2.3 mm/5.8+/-1.0 mm. Pneumatization progresses gradually to reach at 16 years 23.0+/-4.5 mm/22.6+/-5.8 mm/12.8+/-3.1 mm. Frontal sinuses present a wide variation in size and most of the time are not valuable with routine head MRI techniques. They are not aerated before the age of 6 years. Frontal sinuses dimensions at 16 years were 12.8+/-5.0 mm/21.9+/-8.4 mm/24.5+/-13.3 mm. A sinus volume index (SVI) of maxillary and sphenoid sinus was computed using a simplified ellipsoid volume formula, and a table with SVI according to age with percentile variations is proposed for easy clinical application. Percentile curves of maxillary and sphenoid sinuses are presented to provide a basis for objective determination of sinus size and volume during development. These data are applicable to other techniques such as conventional X-ray and CT scan.
Resumo:
The cellular localisation of neurofilament triplet subunits was investigated in the rat neocortex. A subset of mainly pyramidal neurons showed colocalisation of subunit immunolabelling throughout the neocortex, including labelling with the antibody SMI32, which has been used extensively in other studies of the primate cortex as a selective cellular marker. Neurofilament-labelled neurons were principally localised to two or three cell layers in most cortical regions, but dramatically reduced labelling was present in areas such as the perirhinal cortex, anterior cingulate and a strip of cortex extending from caudal motor regions through the medial parietal region to secondary visual areas. However, quantitative analysis demonstrated a similar proportion (10-20%) of cells with neurofilament triplet labelling in regions of high or low labelling. Combining retrograde tracing with immunolabelling showed that cellular content of the neurofilament proteins was not correlated with the length of projection. Double labelling immunohistochemistry demonstrated that neurofilament content in axons was closely associated with myelination. Analysis of SMI32 labelling in development indicated that content of this epitope within cell bodies was associated with relatively late maturation, between postnatal days 14 and 21. This study is further evidence of a cell type-specific regulation of neurofilament proteins within neocortical neurons. Neurofilament triplet content may be more closely related to the degree of myelination, rather than the absolute length, of the projecting axon.
Resumo:
OBJECTIVE.: Injection of opioids to the superior cervical ganglion (SCG) has been reported to provide pain relief in patients suffering from different kinds of neuropathic facial pain conditions, such as trigeminal neuralgia, postherpetic neuralgia, and atypical facial pain. The classic approach to the SCG is a transoral technique using a so-called "stopper" to prevent accidental carotid artery puncture. The main disadvantage of this technique is that the needle tip is positioned distant from the actual target, possibly impeding successful block of the SCG. A further limitation is that injection of local anesthetics due to potential carotid artery puncture is contraindicated. We hypothesized that the SCG can be identified and blocked using ultrasound imaging, potentially increasing precision of this technique. INTERVENTIONS.: In this pilot study, 20 US-guided simulated blocks of the SCG were performed in 10 human cadavers in order to determine the accuracy of this novel block technique. After injection of 0.1 mL of dye, the cadavers were dissected to evaluate the needle position and coloring of the SCG. RESULTS.: Nineteen of the 20 needle tips were located in or next to the SCG. This corresponded to a simulated block success rate of 95% (95% confidence interval 85-100%). In 17 cases, the SCG was completely colored, and in two cases, the caudal half of the SCG was colored with dye. CONCLUSIONS.: The anatomical dissections confirmed that our ultrasound-guided approach to the SCG is accurate. Ultrasound could become an attractive alternative to the "blind" transoral technique of SCG blocks.
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
The kitten's auditory cortex (including the first and second auditory fields AI and AII) is known to send transient axons to either ipsi- or contralateral visual areas 17 and 18. By the end of the first postnatal month the transitory axons, but not their neurons of origin, are eliminated. Here we investigated where these neurons project after the elimination of the transitory axon. Eighteen kittens received early (postnatal day (pd) 2 - 5) injections of long lasting retrograde fluorescent traces in visual areas 17 and 18 and late (pd 35 - 64) injections of other retrograde fluorescent tracers in either hemisphere, mostly in areas known to receive projections from AI and AII in the adult cat. The middle ectosylvian gyrus was analysed for double-labelled neurons in the region corresponding approximately to AI and AII. Late injections in the contralateral (to the analysed AI, AII) hemisphere including all of the known auditory areas, as well as some visual and 'association' areas, did not relabel neurons which had had transient projections to either ipsi- or contralateral visual areas 17 - 18. Thus, AI and AII neurons after eliminating their transient juvenile projections to visual areas 17 and 18 do not project to the other hemisphere. In contrast, relabelling was obtained with late injections in several locations in the ipsilateral hemisphere; it was expressed as per cent of the population labelled by the early injections. Few neurons (0 - 2.5%) were relabelled by large injections in the caudal part of the posterior ectosylvian gyrus and the adjacent posterior suprasylvian sulcus (areas DP, P, VP). Multiple injections in the middle ectosylvian gyrus relabelled a considerably larger percentage of neurons (13%). Single small injections in the middle ectosylvian gyrus (areas AI, AII), the caudal part of the anterior ectosylvian gyrus and the rostral part of the posterior ectosylvian gyrus relabelled 3.1 - 7.0% of neurons. These neurons were generally near (<2.0 mm) the outer border of the late injection sites. Neurons with transient projections to ipsi- or contralateral visual areas 17 and 18 were relabelled in similar proportions by late injections at any given location. Thus, AI or AII neurons which send a transitory axon to ipsi- or contralateral visual areas 17 and 18 are most likely to form short permanent cortical connections. In that respect, they are similar to medial area 17 neurons that form transitory callosal axons and short permanent axons to ipsilateral visual areas 17 and 18.