111 resultados para Cartões CRC
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The objective is to develop a cost-effective, reliable and non invasive screening test able to detect early CRCs and adenomas. This is done on a nucleic acids multigene assay performed on peripheral blood mononuclear cells (PBMCs). METHODS: A colonoscopy-controlled study was conducted on 179 subjects. 92 subjects (21 CRC, 30 adenoma >1 cm and 41 controls) were used as training set to generate a signature. Other 48 subjects kept blinded (controls, CRC and polyps) were used as a test set. To determine organ and disease specificity 38 subjects were used: 24 with inflammatory bowel disease (IBD),14 with other cancers (OC). Blood samples were taken and PBMCs were purified. After the RNA extraction, multiplex RT-qPCR was applied on 92 different candidate biomarkers. After different univariate and multivariate analysis 60 biomarkers with significant p-values (<0.01) were selected. 2 distinct biomarker signatures are used to separate patients without lesion from those with CRC or with adenoma, named COLOX CRC and COLOX POL. COLOX performances were validated using random resampling method, bootstrap. RESULTS: COLOX CRC and POL tests successfully separate patients without lesions from those with CRC (Se 67%, Sp 93%, AUC 0.87), and from those with adenoma > 1cm (Se 63%, Sp 83%, AUC 0.77). 6/24 patients in the IBD group and 1/14 patients in the OC group have a positive COLOX CRC. CONCLUSION: The two COLOX tests demonstrated a high Se and Sp to detect the presence of CRCs and adenomas > 1 cm. A prospective, multicenter, pivotal study is underway in order to confirm these promising results in a larger cohort.
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.