18 resultados para Carbohydrate Metabolism
em Université de Lausanne, Switzerland
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
OBJECTIVE: The study tests the hypothesis that a low daily fat intake may induce a negative fat balance and impair catch-up growth in stunted children between 3 and 9y of age. DESIGN: Randomized case-control study. SETTING: Three rural villages of the West Kiang District, The Gambia. SUBJECTS: Three groups of 30 stunted but not wasted children (height for age z-score < or = -2.0, weight for height z-score > or = -2.0) 3-9 y of age were selected by anthropometric survey. Groups were matched for age, sex, village, degree of stunting and season. INTERVENTION: Two groups were randomly assigned to be supplemented five days a week for one year with either a high fat (n = 29) or a high carbohydrate biscuit (n = 30) each containing approximately 1600 kJ. The third group was a non supplemented control group (n = 29). Growth, nutritional status, dietary intake, resting energy expenditure and morbidity were compared. RESULTS: Neither the high fat nor the high carbohydrate supplement had an effect on weight or height gain. The high fat supplement did slightly increase adipose tissue mass. There was no effect of supplementation on resting energy expenditure or morbidity. In addition, the annual growth rate was not associated with a morbidity score. CONCLUSIONS: Results show that neither a high fat nor a high carbohydrate supplement given during 12 months to stunted Gambian children induced catch-up growth. The authors suggest that an adverse effect of the environment on catch-up growth persists despite the nutritional interventions.
Resumo:
The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions.
Resumo:
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Resumo:
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Resumo:
Perineural and intraneural fibrosis is thought to be the main cause of failure of the many surgical treatments of neuropathic pain. We have used Adcon-T/N carbohydrate polymer gel for prevention of perineural fibrosis in several parts of the body. In this retrospective study, 54 patients who presented with postoperative neuropathic pain had microsurgical epineural neurolysis and relocation of a terminal neuroma. In 19 of them, the carbohydrate gel was applied at the same time. The mean follow-up was four years and the nerve distribution varied. Postoperative improvement in pain scores (visual analogue scale (VAS) and neuropathic pain scale inventory (NPSI)), sensitivity, overall improvement and satisfaction were equivalent in the two groups, with pain relief in about 80% of the patients. There was no significant beneficial effect in the carbohydrate gel group. Patients treated with this device had a higher infection rate (21 compared with 0, p = 0.01) and delayed wound healing (31.6 compared with 11.8, p = 0.2). We conclude that good long-term pain relief is obtained postoperatively independently of the addition of carbohydrate gel. There was a slight but not significant trend towards profound pain relief with the gel.
Resumo:
La mesure de la fraction libre du magnésium circulant est désormais possible grâce aux électrodes sélectives. Lors d'une déplétion magnésique l'enquête étiologique est orientée par la comparaison de la magnésiurie et de la magnésémie. Les syndromes de Bortter, ou alcaloses hypokaliémiques d'origine rénale, sont des tubulopathies primitives définies par des signes simples: tension artérielle normale; alcalose hypokaliémiques; excrétion rénale conservée des chlorures et recherche de diurétiques négative dans les urines. Grâce à la mesure de la magnésémie et de la calciurie on distingue au moins deux alcaloses hypokaliémiques d'origine rénale, la maladie de Gitelman et le syndrome de Bartter au sens strict.
Resumo:
The plasma glucose excursion may influence the metabolic responses after oral glucose ingestion. Although previous studies addressed the effects of hyperglycemia in conditions of hyperinsulinemia, it has not been evaluated whether the route of glucose administration (oral vs. intravenous) plays a role. Our aim was to determine the effects of moderately controlled hyperglycemia on glucose metabolism before and after oral glucose ingestion. Eight normal men underwent two oral glucose clamps at 6 and 10 mmol/l plasma glucose. Glucose turnover and cycling rates were measured by infusion of [2H7]glucose. The oral glucose load was labeled by D-[6,6-2H2]glucose to monitor exogenous glucose appearance, and respiratory exchanges were measured by indirect calorimetry. Sixty percent of the oral glucose load appeared in the systemic circulation during both the 6 and 10 mmol/l plasma glucose tests, although less endogenous glucose appeared during the 10 mmol/l tests before glucose ingestion (P < 0.05). This inhibitory effect of hyperglycemia was not detectable after oral glucose ingestion, although glucose utilization was increased (+28%, P < 0.05) due to increased nonoxidative glucose disposal [10 vs. 6 mmol/l: +20%, not significant (NS) before oral glucose ingestion; +40%, P < 0.05 after oral glucose ingestion]. Glucose cycling rates were increased by hyperglycemia (+13% before oral glucose ingestion, P < 0.001; +31% after oral glucose ingestion, P < 0.05) and oral glucose ingestion during both the 6 (+10%, P < 0.05) and 10 mmol/l (+26%, P < 0.005) tests. A moderate hyperglycemia inhibits endogenous glucose production and contributes to glucose tolerance by enhancing nonoxidative glucose disposal. Hyperglycemia and oral glucose ingestion both stimulate glucose cycling.
Resumo:
Continuous respiratory exchange measurements were performed on 10 healthy young women for 1 h before, 3 h during, and 3 h after either parenteral (iv) or intragastric (ig) administration of a nutrient mixture (52% glucose, 18% amino acid, and 30% lipid energy) infused at twice the postabsorptive resting energy expenditure (REE). REE rose from 0.98 +/- 0.02 (iv) and 0.99 +/- 0.02 kcal/min (ig) postabsorptively to 1.13 +/- 0.03 (iv) and 1.13 +/- 0.02 kcal/min (ig), resulting in nutrient-induced thermogenesis of 10 +/- 0.6 and 9.3 +/- 0.9%, respectively, when related to the metabolizable energy. The respiratory quotient rose from preinfusion values of 0.81 +/- 0.02 (iv) and 0.80 +/- 0.01 (ig) to 0.86 +/- 0.01 (iv) and 0.85 +/- 0.01 (ig). After nutrient administration the respiratory quotient fell significantly to below the preinfusion values. Plasma glucose and insulin concentrations rose during nutrient administration but were higher during the intravenous route. It is concluded that, although the response time to intragastric administration was delayed, the thermic effects and overall substrate oxidations were comparable during intravenous or intragastric administration, albeit, at lower plasma glucose and insulin concentrations via the intragastric route.
Resumo:
Energy balance is the difference between metabolizable energy intake and total energy expenditure. Energy intake is difficult to measure accurately; changes in body weight, for example, are not a good measure of the adequacy of energy intake, because fluctuations in body weight are common even if the overall trend is toward weight loss. It is now customary to assess energy requirements indirectly from total energy expenditure. Total energy expenditure consists of basal metabolism, postprandial thermogenesis, and physical activity. Energy expenditure is related to both body weight and body composition. A reduction in total energy expenditure accompanies weight loss, because basal metabolic rate decreases with the loss of lean tissue mass. Similarly, with weight gain, there is an increase in basal metabolic rate, because lean tissue mass grows to support the increase in fat tissue mass. Excess energy intake over energy expenditure causes weight gain and an accompanying increase in total energy expenditure. Following a period of adaptation, total energy expenditure will match energy intake and body weight will stabilize at a higher level. This same relationship holds for weight loss. Respiratory quotient (measured in steady state) is an indication of the proportion of energy expenditure derived from fat and carbohydrate oxidation. Over long periods of time, fat balance is equivalent to energy balance, as an excess of fat intake over fat oxidation causes fat storage.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.
Resumo:
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.