9 resultados para Calcareous algae

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Antalya nappes (western Taurides-Turkey)*consist of several tectonic units which document the*Southern Neotethyan paleomargin from the Arabo-African*shallow shelf to the oceanic crust.*The Kerner Gorge Units (Upper Antalya nappes)*show a full stratigraphical succession from Ordovician*to Late Cretaceous. A carbonate platform regime*appeared during Late Permian times and existed up*to the early Middle Triassic. For detailed investigations*on the Permo-Triassic boundary, two lithostratigraphic*profiles have been selected: the Curuk*dag and the Kerner Gorge sections.*The main results presented in this paper are : 1) the Late Permian Pamucak Formation (Midian-*Dzhulfian) consists of calcareous algae-foraminiferae*bearing black limestones, locally rich in*brachiopods, crinoids and bryozoae : 2) this black limestone is overlain by an oolitic*grainstone. In the Curuk dag section, the oolitic horizon*is capped by a thin level of calcrete type; emersive*conditions are also inferred by a strong diagenetic*change within the oolitic deposit : 3) the first Early Triassic fossils, appearing*within or above the oolitic grainstone, are microforaminifera*and Pseudoclaraia wangi (late Griesbachian*in age). In the Curuk dag, a rich Early Triassic*microforaminifera association seems linked to a microbiallite*boundstone facies : 4) the overlying unfossiliferous lime mudstone,*the oolitical thick bedded grainstone, the variegated*marly limestone and the vermicular limestone facies*are present. not only in southern Turkey but seem*constant through ' the entire peri arabo-african platform.*Striking similarities appear between the studied*profiles and the Bellerophon-Werfen succession in the*Southern Alps..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnetostratigraphic study of the Kavaalani section of uppermost Carnian to Upper Norian age, located in the Antalya Calcareous Nappes (southwestern Turkey), reveals nineteen polarity intervals. This pattern correlates very well with two other polarity sequences obtained from the same nappe system (Bolucektasi Tepe and Kavur Tepe) if these sections were deposited in the same (northern) hemisphere. This new interpretation changes our previous conclusions regarding the southern hemisphere origin of the magnetic remanence of the Kavur Tepe section. The paleomagnetic data obtained from the Kavur Tepe and the Kavaalani sections therefore reflect large (similar to 180 degrees) internal rotations within the Antalya nappes. These nappes were likely formed close to the northern tip of the Arabian promontory. We propose a revised yet still preliminary version of the Norian magnetic polarity sequence.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Early Toarcian, major paleoenvironnemental and paleoceanographical changes occurred, leading to an oceanic anoxic event (OAE) and to a perturbation of the carbon isotope cycle. Although the standard biochronology of the Lower Jurassic is essentially based upon ammonites, in recent years biostratigraphy based on calcareous nannofossils and dinoflagellate cysts is increasingly used to date Jurassic rocks. However, the precise dating and correlation of the Early Toarcian OAE, and of the associated delta C-13 anomaly in different settings of the western Tethys, are still partly problematic, and it is still unclear whether these events are synchronous or not. In order to allow more accurate correlations of the organic rich levels recorded in the Lower Toarcian OAE, this account proposes a new biozonation based on a quantitative biochronology approach, the Unitary Associations (UA), applied to calcareous nannofossils. This study represents the first attempt to apply the UA method to Jurassic nannofossils. The study incorporates eighteen sections distributed across western Tethys and ranging from the Pliensbachian to Aalenian, comprising 1220 samples and 72 calcareous nannofossil taxa. The BioGraph [Savary, J., Guex, J., 1999. Discrete biochronological scales and unitary associations: description of the Biograph Computer program. Memoires de Geologie de Lausanne 34, 282 pp] and UA-Graph (Copyright Hammer O., Guex and Savary, 2002) softwares provide a discrete biochronological framework based upon multi-taxa concurrent range zones in the different sections. The optimized dataset generates nine UAs using the co-occurrences of 56 taxa. These UAs are grouped into six Unitary Association Zones (UA-Z), which constitute a robust biostratigraphic synthesis of all the observed or deduced biostratigraphic relationships between the analysed taxa. The UA zonation proposed here is compared to ``classic'' calcareous nannofossil biozonations, which are commonly used for the southern and the northern sides of Tethys. The biostratigraphic resolution of the UA-Zones varies from one nannofossil subzone or part of it to several subzones, and can be related to the pattern of calcareous nannoplankton originations and extinctions during the studied time interval. The Late Pliensbachian - Early Toarcian interval (corresponding to the UA-Z II) represents a major step in the Jurassic nannoplankton radiation. The recognized UA-Zones are also compared to the carbon isotopic negative excursion and TOC maximum in five sections of central Italy, Germany and England, with the aim of providing a more reliable correlation tool for the Early Toarcian OAE, and of the associated isotopic anomaly, between the southern and northern part of western Tethys. The results of this work show that the TOC maximum and delta C-13 negative excursion correspond to the upper part of the UA-Z II (i.e., UA 3) in the sections analysed. This suggests that the Early Toarcian OAE was a synchronous event within the western Tethys. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed carbon-isotope stratigraphic study for the uppermost Pliensbachian lowermost Aalenian interval in the Median Subbetic palaeogeographic domain (External zones of the Betic Cordillera, southern Spain) has been carried out. During the Early Jurassic, the Median Subbetic, which represents a typical basin of the Hispanic Corridor connecting the Tethys and the Eastern Pacific, was located in the westernmost Tethys. The analyzed sections encompass the entire Toarcian stage as represented in the southern Iberian palaeomargin. Rocks are mainly rhythmic sequences of grey marls and marly limestones containing a rich ammonite fauna, nannofossils, and benthic foraminifers-all these provide an accurate biostratigraphic control. The lower and upper Toarcian boundaries are well represented in some of these sections and therefore represent optimal sites to link the carbon-isotope curves to ammonite zones, and to nannofossil events. delta C-13 values of bulk carbonates from the different localities of the Subbetic basin have similar variations from the uppermost Pliensbachian to the lowermost Aalenian, suggesting changes in the original DIC carbon isotope composition along the Hispanic corridor. The transition from Pliensbachian to Toarcian is marked by increasing delta C-13 values from similar to 12 to 2.0 parts per thousand, interrupted in the Serpentinum Zone by a negative shift concomitant with the Toarcian oceanic anoxic event (T-OAE), with the major ammonite extinction event of the Toarcian, and an important turnover of calcareous nannoplankton. The negative shift observed in the Serpentinum Zone confirms the global perturbation of the carbon cycling documented along the Tethys and the palaeo-Pacific in organic material and in marine carbonates. However, the amplitude of the negative excursion (similar to - 1.5 parts per thousand) is not compatible with an isotopic homogeneous seawater DIC and/or CO2 atmospheric reservoirs. The interval from the middle to the top of the Toarcian delta C-13 shows relatively constant values, minor ammonite turnovers, and is associated with increasing diversity of calcareous nannoplankton. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of Ar-40/Ar-39 dating integrated with calcareous plankton biostratigraphical data performed on two volcaniclastic layers (VLs) interbedded in Burdigalian to Lower Langhian outer shelf carbonate sediments cropping out in Monferrato (NW Italy) are presented. The investigated VLs, named Villadeati and Varengo, are thick sedimentary bodies with scarce lateral continuity. They are composed of prevalent volcanogenic material (about 87 up to 90% by volume) consisting of glass shards and volcanic phenocrysts (plagioclase, biotite, quartz, amphibole, sanidine and magnetite) and minor extrabasinal and intrabasinal components. On the basis of their composition and sedimentological features, the VLs have been interpreted as distal shelf turbidites deposited below storm wave base. However, compositional characteristics evidence the rapid resedimentation of the volcanic detritus after its primary deposition and hence the VL sediments can be considered penecontemporaneous to the encasing deposits. Biostratigraphical analyses were carried out on the basis of a quantitative study of calcareous nannofossil and planktonic foraminifer associations, whilst Ar-40/Ar-39 dating were performed on biotite at Villadeati and on homeblende at Varengo. The data resulting from the Villadeati section have permitted to estimate an age of 18.7 +/- 0.1 Ma for the last common occurrence (LCO) of Sphenolithus belemnos whereas those from Varengo allowed to extrapolate an age of 16.4 Ma +/-0.1 Ma for the first occurrence (FO) of Praeorbulina sicana. This latter biovent is commonly used to approximate the base of the Langhian stage, that corresponds to the Early-Middle Miocene boundary.