103 resultados para Ca-2 Release

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD). We found that excitation-coupled calcium entry is strongly enhanced in cells from patients with CCD compared with individuals with MH and controls. Furthermore, excitation-coupled calcium entry induces generation of reactive nitrogen species and enhances nuclear localization of NFATc1, which in turn may be responsible for the increased IL-6 released by myotubes from patients with CCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the major families of voltage-gated Ca(2+) channels, the low-voltage-activated channels formed by the Ca(v)3 subunits, referred to as T-type Ca(2+) channels, have recently gained increased interest in terms of the intracellular Ca(2+) signals generated upon their activation. Here, we provide an overview of recent reports documenting that T-type Ca(2+) channels act as an important Ca(2+) source in a wide range of neuronal cell types. The work is focused on T-type Ca(2+) channels in neurons, but refers to non-neuronal cells in cases where exemplary functions for Ca(2+) entering through T-type Ca(2+) channels have been described. Notably, Ca(2+) influx through T-type Ca(2+) channels is the predominant Ca(2+) source in several neuronal cell types and carries out specific signaling roles. We also emphasize that Ca(2+) signaling through T-type Ca(2+) channels occurs often in select subcellular compartments, is mediated through strategically co-localized targets, and is exploited for unique physiological functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candida albicans RCH1 (regulator of Ca(2+) homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca(2+) and tolerance to azoles and Li(+), which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca(2+) pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca(2+) sensitivity, Ca(2+) uptake and cytosolic Ca(2+) level. The Ca(2+) hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca(2+)/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca(2+) homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Conventional therapy with beta-blockers is incompletely effective in preventing arrhythmic events in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). We have previously discovered that flecainide in addition to conventional drug therapy prevents ventricular arrhythmias in patients with genotype-positive CPVT. OBJECTIVE: To study the efficacy of flecainide in patients with genotype-negative CPVT. METHODS: We studied the efficacy of flecainide for reducing ventricular arrhythmias during exercise testing and preventing arrhythmia events during long-term follow-up. RESULTS: Twelve patients with genotype-negative CPVT were treated with flecainide. Conventional therapy failed to control ventricular arrhythmias in all patients. Flecainide was initiated because of significant ventricular arrhythmias (n = 8), syncope (n = 3), or cardiac arrest (n = 1). At the baseline exercise test before flecainide, 6 patients had ventricular tachycardia and 5 patients had bigeminal or frequent ventricular premature beats. Flecainide reduced ventricular arrhythmias at the exercise test in 8 patients compared to conventional therapy, similar to that in patients with genotype-positive CPVT in our previous report. Notably, flecainide completely prevented ventricular arrhythmias in 7 patients. Flecainide was continued in all patients except for one who had ventricular tachycardia at the exercise test on flecainide. During a follow-up of 48±94 months, arrhythmia events (sudden cardiac death and aborted cardiac arrest) associated with noncompliance occurred in 2 patients. Flecainide was not discontinued owing to side effects in any of the patients. CONCLUSIONS: Flecainide was effective in patients with genotype-negative CPVT, suggesting that spontaneous Ca(2+) release from ryanodine channels plays a role in arrhythmia susceptibility, similar to that in patients with genotype-positive CPVT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of astrocytes as structural and metabolic support for neurons is known since the beginning of the last century. Because of their strategic localization between neurons and capillaries they can monitor and control the level of synaptic activity by providing energetic metabolites to neurons and remove excess of neurotransmitters. During the last two decades number of papers further established that the astrocytic plasma-membrane G-protein coupled receptors (GPCR) can sense external inputs (such as the spillover of neurotransmitters) and transduce them as intracellular calcium elevations and release of chemical transmitters such as glutamate. The chemokine CXCR4 receptor is a GPCR widely expressed on glial cells (especially astrocytes and microglia). Activation of the astrocytic CXCR4 by its natural ligand CXCL12 (or SDF1 alpha) results in a long chain of intracellular and extracellular events (including the release of the pro-inflammatory cytokine TNFalpha and prostanglandins) leading to glutamate release. The emerging role of CXCR4-CXCL12 signalling axis in brain physiology came from the recent observation that glutamate in astrocytes is released via a regulated exocytosis process and occurs with a relatively fast time-scale, in the order of few hundred milliseconds. Taking into account that astrocytes are electrically non-excitable and thus exocytosis rely only on a signalling pathway that involves the release Ca(2+) from the internal stores, these results suggested a close relationship between sites of Ca(2+) release and those of fusion events. Indeed, a recent observation describes structural sub-membrane microdomains where fast ER-dependent calcium elevations occur in spatial and temporal correlation with fusion events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation-contraction coupling (ECC) and Ca(2+) handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II-mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca(2+) and confocal Ca(2+) imaging were used to examine ECC remodeling at early ( approximately 20 weeks of age) and late ( approximately 60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca(2+) signaling, specifically an upregulation of the Na(+)/Ca(2+) exchanger-mediated Ca(2+) transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca(2+) content resulting from a shift in the ratio of plasmalemmal Ca(2+) removal and sarcoplasmic reticulum Ca(2+) uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca(2+)-induced Ca(2+) release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Preserving β cell function during the development of obesity and insulin resistance would limit the worldwide epidemic of type 2 diabetes (T2DM). Endoplasmic reticulum (ER) calcium (Ca(2+)) depletion induced by saturated free fatty acids and cytokines causes β cell ER stress and apoptosis, but the molecular mechanisms behind these phenomena are still poorly understood. Here, we demonstrate that palmitate-induced sorcin (SRI) down-regulation, and subsequent increases in glucose-6-phosphatase catalytic subunit-2 (G6PC2) levels contribute to lipotoxicity. SRI is a calcium sensor protein involved in maintaining ER Ca(2+) by inhibiting ryanodine receptor activity and playing a role in terminating Ca(2+)-induced Ca(2+) release. G6PC2, a GWAS gene associated with fasting blood glucose, is a negative regulator of glucose-stimulated insulin secretion (GSIS). High fat feeding in mice and chronic exposure of human islets to palmitate decreases endogenous SRI expression while levels of G6PC2 mRNA increase. Sorcin null mice are glucose intolerant, with markedly impaired GSIS and increased expression of G6pc2. Under high fat diet, mice overexpressing SRI in the β cell display improved glucose tolerance, fasting blood glucose and GSIS, whereas G6PC2 levels are decreased and cytosolic and ER Ca(2+) are increased in transgenic islets. SRI may thus provide a target for intervention in T2DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca(2+)-regulated, may be physiologically relevant. The properties of Ca(2+)-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.