4 resultados para CVD (Chemical Vapor Deposition)
em Université de Lausanne, Switzerland
Resumo:
In spite of numerous applications of carbon nanofibers (CNFs) in a variety of fields, the potential release of airborne CNF during their special application, which could lead to workers or end-users exposure, has not been well investigated. In this study, the potential release of CNF from an organic vapour respirator cartridge was evaluated by carbon analysis and microscopy analysis. The cartridge consisted of an AC (Activated Carbon)/CNF composite adsorbent and different types of particulate filters. The composite adsorbent CNF were prepared by chemical vapour deposition (CVD). Air was passed through the prepared cartridge for 12 hours at 12 l/min and particles were collected on sampling filters suitable for measuring organic and elemental carbon (OC/EC) by carbon analysis based on the NIOSH 5040 method. Breakthrough of CNFs was also checked by scanning and transmission electron microscopy (SEM/TEM). This study found only minimal amounts of released elemental carbon while passing the air through the cartridge. Meanwhile TEM photos showed a few CNF structures for AC/CNF composite adsorbents which were not in the critical range in terms of length, aspect ratio, or number. [Authors]
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Artificial radionuclides ((137)Cs, (90)Sr, Pu, and (241)Am) are present in soils because of Nuclear Weapon Tests and accidents in nuclear facilities. Their distribution in soil depth varies according to soil characteristics, their own chemical properties, and their deposition history. For this project, we studied the atmospheric deposition of (137)Cs, (90)Sr, Pu, (241)Am, (210)Pb, and stable Pb. We compared the distribution of these elements in soil profiles from different soil types from an alpine Valley (Val Piora, Switzerland) with the distribution of selected major and trace elements in the same soils. Our goals were to explain the distribution of the radioisotopes as a function of soil parameters and to identify stable elements with analogous behaviors. We found that Pu and (241)Am are relatively immobile and accumulate in the topsoil. In all soils, (90)Sr is more mobile and shows some accumulations at depth into Fe-Al rich horizons. This behavior is also observed for Cu and Zn, indicating that these elements may be used as chemical analogues for the migration of (90)Sr into the soil.