221 resultados para COPHYLOGENY RECONSTRUCTION PROBLEM

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the dispersal routes reconstruction problem can be stated as an instance of a graph theoretical problem known as the minimum cost arborescence problem, for which there exist efficient algorithms. Furthermore, we derive some theoretical results, in a simplified setting, on the possible optimal values that can be obtained for this problem. With this, we place the dispersal routes reconstruction problem on solid theoretical grounds, establishing it as a tractable problem that also lends itself to formal mathematical and computational analysis. Finally, we present an insightful example of how this framework can be applied to real data. We propose that our computational method can be used to define the most parsimonious dispersal (or invasion) scenarios, which can then be tested using complementary methods such as genetic analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a large variety of methods have been recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these methods use regularization schemes generally based on the assumption that the fiber orientation distribution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regularization, based on an ℓ(2)-norm prior, which promotes a weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further accelerate the acquisitions and ℓ(1)-norm minimization is generally employed as a means to promote sparsity in the recovered FODs. In this paper, we provide evidence that the use of an ℓ(1)-norm prior to regularize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum up to unity. To overcome this ℓ(1) inconsistency while simultaneously exploiting sparsity more optimally than through an ℓ(2) prior, we reformulate the reconstruction problem as a constrained formulation between a data term and a sparsity prior consisting in an explicit bound on the ℓ(0)norm of the FOD, i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental results show that the proposed ℓ(0) formulation significantly reduces modeling errors compared to the state-of-the-art ℓ(2) and ℓ(1) regularization approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aim of the study: Patients with anterior cruciate ligament (ACL) reconstruction and femoral catheter analgesia may develop quadriceps amyotrophy. We aimed to determine whether this amyotrophy might be related to a femoral neuropathy. Material and method: After Ethical Committee approval and patients' written informed consent, 17 patients ASA I and II scheduled to undergo ACL reconstruction were recruited. An electromyography (EMG) was performed before the operation in order to exclude a femoral neuropathy. A femoral nerve catheter was inserted before the surgery with the aid of a nerve stimulator, and 20 ml of 0.5% ropivacaine was injected. The operation was done under spinal or general anaesthesia. Postoperative analgesia was provided with 0.2% ropivacaine for 72 hours, in association with oxycodone, paracetamol and ibuprofen. A second EMG was performed 4 weeks after the ACL repair. A femoral neuropathy was defined as a reduction of the surface of the motor response of more than 20%, compared to the first EMG. A third EMG was performed at 6 months if a neuropathy was present. Results: Mean age of this group of patients was 27 years old (range 18-38 y.). Among the 17 patients, 4 developed a transient femoral neuropathy (incidence of 24%) without clinical complain. Conclusion: In this study, the incidence of subclinical femoral neuropathy after ACL reconstruction is high. This lesion may be caused by the femoral catheter (mechanical damage, toxicity of local anaesthesia) or by the Tourniquet. Further studies are needed to investigate the incidence of subclinical neuropathy, according to the type of analgesia (epidural analgesia, PCA) and surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Renal transplantation is considered the treatment of choice for end-stage renal disease. However, the association of occlusive aorto-iliac disease and chronic renal failure is frequent and aorto-iliac reconstruction may be necessary prior to renal transplantation. This retrospective study reviews the results of this operative strategy.Material and Methods: Between January 2001 and June 2010, 309 patients underwent renal transplantation at our institution and 8 patients had prior aorto-iliac reconstruction using prosthetic material. There were 6 men and 2 women with a median age of 62 years (range 51-70). Five aorto-bifemoral and 2 aorto-bi-iliac bypasses were performed for stage II (n=5), stage IV (n=1) and aortic aneurysm (n=1). In one patient, iliac kissing stents and an ilio-femoral bypass were implanted. 4 cadaveric and 4 living donor renal transplantations were performed with an interval of 2 months to 10 years after revascularization.The results were analysed with respect of graft and patients survival. Differences between groups were tested by the log rank method.Results: No complications and no death occurred in the post-operative period. All bypasses remained patent during follow-up. The median time of post transplantation follow-up was 46 months for all patients and 27 months for patients with prior revascularization. In the revascularized group and control group, the graft and patient survival at 1 year were respectively 100%/96%, 100%/99% and at 5 years 86%/86%, 86%/94%, without significant differences between both groups.Discussion: Our results suggest that renal transplantation following prior aorto-iliac revascularisation with prosthetic material is safe and effective. Patients with end-stage renal disease and concomitant aorto-iliac disease should therefore be considered for renal transplantation. However, caution in the interpretation of the results is indicated due to the small sample size of our study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructive surgery takes an important place in breast cancer treatment. Immediate breast reconstruction is performed during the same operation as mastectomy. It is contraindicated following radiotherapy. Reconstruction performed after mastectomy is called differed breast reconstruction. It is completed 6 months after chemotherapy and 1 year after radiotherapy. Prosthetic breast reconstruction is indicated when tissues are of good qualities and breast are small. Autologous reconstruction is performed in case of radiotherapy or large breast. After breast reconstruction, imperfections can be corrected with autologous fat injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validation is arguably the bottleneck in the diffusion magnetic resonance imaging (MRI) community. This paper evaluates and compares 20 algorithms for recovering the local intra-voxel fiber structure from diffusion MRI data and is based on the results of the "HARDI reconstruction challenge" organized in the context of the "ISBI 2012" conference. Evaluated methods encompass a mixture of classical techniques well known in the literature such as diffusion tensor, Q-Ball and diffusion spectrum imaging, algorithms inspired by the recent theory of compressed sensing and also brand new approaches proposed for the first time at this contest. To quantitatively compare the methods under controlled conditions, two datasets with known ground-truth were synthetically generated and two main criteria were used to evaluate the quality of the reconstructions in every voxel: correct assessment of the number of fiber populations and angular accuracy in their orientation. This comparative study investigates the behavior of every algorithm with varying experimental conditions and highlights strengths and weaknesses of each approach. This information can be useful not only for enhancing current algorithms and develop the next generation of reconstruction methods, but also to assist physicians in the choice of the most adequate technique for their studies.