4 resultados para COMPRESSIBILITY

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haemangioblastomas are rarely seen in the suprasellar region, arising from the optic apparatus or pituitary stalk, mimicking meningiomas on the preoperative MRI scan. They may be suspected in the presence of large flow voids and the absence of a dural tail. Intraoperatively, the extreme vascularity and compressibility of the tumour with no dural attachment should alert the surgeon to the diagnosis. A complete resection with preservation of vision may be successfully attempted because of the well-demarcated tumour-nerve interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow, in 2D rock samples having mesoscopic heterogeneities and in the presence of strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by constant values, including the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A defining characteristic of fractured rocks is their very high level of seismic attenuation, which so far has been assumed to be mainly due to wave-induced fluid flow (WIFF) between the fractures and the pore space of the embedding matrix. Using oscillatory compressibility simulations based on the quasi-static poroelastic equations, we show that another important, and as of yet undocumented, manifestation of WIFF is at play in the presence of fracture connectivity. This additional energy loss is predominantly due to fluid flow within the connected fractures and is sensitive to their lengths, permeabilities, and intersection angles. Correspondingly, it contains key information on the governing hydraulic properties of fractured rock masses and hence should be accounted for whenever realistic seismic models of such media are needed.