6 resultados para COMPOUND P-CYDOV
em Université de Lausanne, Switzerland
Resumo:
The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
The depositional stratigraphy of within-channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular `unit' bars and complex `compound' bars), as well as the infill of individual channels (herein termed `channel fills'). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within-channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1 3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (<1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground-penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain-size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object-based models of sandy braided river alluvial architecture.
Resumo:
Dans le cadre de la recherche de nouveaux composés naturels, les métabolites secondaires de plantes aquatiques indigènes, les potamots Potamogeton pectinatus L., P. lucens L., P. perfoliatus L. et P. crispus L. (Potamogetonaceae), ont été étudiés. Par leur position écologique et évolutive particulière entre environnement terrestre et aquatique, les plantes aquatiques ou macrophytes pourraient en effet avoir sélectionné des composés avec des caractéristiques originales. Les extraits dichlorométhaniques (apolaires) des potamots ont été analysés par HPLCUV, HPLC-MS, HPLC-RMN et GC-MS, et testés contre diverses cibles biologiques. Sur la base de ces résultats, les extraits apolaires de P. pectinatus et P. lucens ont été étudiés de manière plus approfondie. Ils ont été fractionnés sur des colonnes ouvertes et par VLC, LPLC, MPLC, CPC et HPLC semi-préparative. Une partie de leurs constituants ont été isolés et leurs structures déterminées par des méthodes spectroscopiques, en particulier par RMN et par MS. Quinze composés ont été ainsi isolés de P. pectinatus et P. lucens, dont sept sont des nouveaux produits naturels. Parmi ces quinze produits, neuf sont des diterpènes ent-labdanes contenant un noyau furane ou un groupe lactonique, dont six sont décrits ici pour la première fois. Certains de ces diterpènes ont montré une activité algicide, ce qui indique une de leurs fonctions possible dans les potamots, et un de ces labdanes, le méthyl-15,16-époxy-12-oxo-8(17),13(16),14-ent-labatrièn-19-oate, a également des propriétés anti-inflammatoires. Les composés présents dans les extraits méthanoliques (polaires) n?ont pas été isolés, mais quatorze d?entre eux ont pu être identifiés par HPLC-UV, HPLC-MS et HPLCRMN. Une majorité de ces constituants sont des flavonoïdes connus, des dérivés glycosylés de l?apigénine, la lutéoline et le chrysoériol, également présents en tant qu?aglycones. Plusieurs ent-labdanes glycosylés ont pu être également identifiés dans ces extraits, parmi lesquels un nouveau composé dont la structure a pu être partiellement déterminée. En conclusion, ce travail a permis de mieux connaître la phytochimie de plusieurs plantes aquatiques de Suisse, et d?isoler de nouveaux produits naturels avec des propriétés biologiques et pharmacologiques intéressantes.<br/><br/>The secondary metabolites of Swiss freshwater plants, the pondweeds Potamogeton pectinatus L., P. lucens L., P. perfoliatus L. and P. crispus L. (Potamogetonaceae), were investigated. Because of their peculiar habitat, in-between aquatic and terrestrial life, aquatic plants should produce secondary metabolites with original chemical or biological features. Their apolar extracts were analysed by HPLC-UV, HPLC-MS, HPLC-NMR and GCMS, and were tested with different bioassays. Based on these results, the apolar extracts of P. pectinatus and P. lucens were investigated more extensively. They were fractionated on open columns, and by VLC, LPLC, MPLC, CPC and semi-preparative HPLC. Their constituents were isolated and their structures elucidated by spectroscopic methods as MS and NMR. Fifteen compounds could be isolated from P. pectinatus and P. lucens, and seven were new natural products. Nine of them were ent-labdane diterpenes with a furan moiety or a lactone group, and six of these labdanes were reported here for the first time as natural products. Some of these diterpenes showed an algaecide effect. This activity indicated their potential ecological function in pondweeds. One compound, methyl-15,16-epoxy-12-oxo-8(17),13(16),14-ent-labatrien-19-oate, revealed also some anti-inflammatory properties. The constituents of polar extracts were not isolated, but fourteen of them could be identified by HPLC-UV, HPLC-MS and HPLC-NMR. The major part of these compounds was known flavonoids as apigenin, lutolin, chrysoeriol and their glycosylated derivatives. Several glycosylated ent-labdanes were also identified, and the structure of a new labdane dihexoside was partially elucidated. In conclusion this study allowed a better knowledge of the phytochemistry of Swiss aquatic plants, and the isolation of new natural products with interesting biological and pharmacological properties.
Resumo:
Exposing the human bronchial epithelial cell line BEAS-2B to the nitric oxide (NO) donor sodium 1-(N,N-diethylamino)diazen-1-ium-1, 2-diolate (DEA/NO) at an initial concentration of 0.6 mM while generating superoxide ion at the rate of 1 microM/min with the hypoxanthine/xanthine oxidase (HX/XO) system induced C:G-->T:A transition mutations in codon 248 of the p53 gene. This pattern of mutagenicity was not seen by 'fish-restriction fragment length polymorphism/polymerase chain reaction' (fish-RFLP/PCR) on exposure to DEA/NO alone, however, exposure to HX/XO led to various mutations, suggesting that co-generation of NO and superoxide was responsible for inducing the observed point mutation. DEA/NO potentiated the ability of HX/XO to induce lipid peroxidation as well as DNA single- and double-strand breaks under these conditions, while 0.6 mM DEA/NO in the absence of HX/XO had no significant effect on these parameters. The results show that a point mutation seen at high frequency in certain common human tumors can be induced by simultaneous exposure to reactive oxygen species and a NO source.