9 resultados para COLIFORM MASTITIS

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a major bovine mastitis pathogen. Although the reported antimicrobial resistance was generally low, the emergence of new genetic clusters in bovine mastitis requires examination of the link between antimicrobial resistance and genotypes. Here, amplified fragment length polymorphism (AFLP) profiles and standard antimicrobial resistance profiles were determined in order to characterize a total of 343 S. aureus cow mastitis isolates from two geographically close regions of Switzerland and France. AFLP profiles revealed similar population compositions in the two regions, with 4 major clusters (C8, C20, C97, and C151), but the proportions of isolates in each cluster significantly diverged between the two countries (P = 9.2 × 10⁻⁹). Antimicrobial resistance was overall low (< 5% resistance to all therapeutically relevant molecules), with the exception of penicillin resistance, which was detected in 26% of the isolates. Penicillin resistance proportions differed between clusters, with only 1 to 2% of resistance associated with C20 and C151 and up to 70% associated with bovine C97. The prevalence of C20 and C8 was unexpectedly high and requires further investigation into the mechanism of adaptation to the bovine host. The strong association of penicillin resistance with few clusters highlights the fact that the knowledge of local epidemiology is essential for rational choices of antimicrobial treatment in the absence of susceptibility testing. Taken together, these observations argue in favor of more routine scrutiny of antimicrobial resistance and antibiotic-resistant clones in cattle and the farm environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus uberis is an environmental pathogen commonly causing bovine mastitis, an infection that is generally treated with penicillin G. No field case of true penicillin-resistant S. uberis (MIC &gt; 16 mg/liter) has been described yet, but isolates presenting decreased susceptibility (MIC of 0.25 to 0.5 mg/liter) to this drug are regularly reported to our laboratory. In this study, we demonstrated that S. uberis can readily develop penicillin resistance in laboratory-evolved mutants. The molecular mechanism of resistance (acquisition of mutations in penicillin-binding protein 1A [PBP1A], PBP2B, and PBP2X) was generally similar to that of all other penicillin-resistant streptococci described so far. In addition, it was also specific to S. uberis in that independent resistant mutants carried a unique set of seven consensus mutations, of which only one (Q(554)E in PBP2X) was commonly found in other streptococci. In parallel, independent isolates from bovine mastitis with different geographical origins (France, Holland, and Switzerland) and presenting a decreased susceptibility to penicillin were characterized. No mosaic PBPs were detected, but they all presented mutations identical to the one found in the laboratory-evolved mutants. This indicates that penicillin resistance development in S. uberis might follow a stringent pathway that would explain, in addition to the ecological niche of this pathogen, why naturally occurring resistances are still rare. In addition, this study shows that there is a reservoir of mutated PBPs in animals, which might be exchanged with other streptococci, such as Streptococcus agalactiae, that could potentially be transmitted to humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a major agent of bovine mastitis. The concomitant emergence of pig-associated methicillin-resistant S. aureus (MRSA) in human carriage and infection requires a reexamination of the host range and specificity of human- and cow-associated S. aureus strains, something which has not been systematically studied previously. The genetic relatedness of 500 S. aureus isolates from bovine mastitis cases, 57 isolates from nasal carriage of farmers, and 133 isolates from nonfarmers was determined by amplified fragment length polymorphism (AFLP) analysis and spa typing. Multilocus sequence typing (MLST) was conducted on a subset of isolates to match AFLP clusters with MLST clonal complexes (CCs). This data set allowed us to study host range and host specificity and to estimate the extent of bovine-to-human transmission. The genotype compositions of S. aureus isolates from farmers and nonfarmers were very similar, while the mastitis isolates were quite distinct. Overall, transmission was low, but specific genotypes did show increased cow-to-human transmission. Unexpectedly, more than one-third of mastitis isolates belonged to CC8, a lineage which has not been considered to be bovine mastitis associated, but it is well known from human carriage and infection (i.e., USA300). Despite the fact that we did detect some transmission of other genotypes from cows to farmers, no transmission of CC8 isolates to farmers was detected, except for one tentative case. This was despite the close genetic relatedness of mastitis CC8 strains to nonfarmer carriage strains. These results suggest that the emergence of the new bovine-adapted genotype was due to a recent host shift from humans to cows concurrent with a loss of the ability to colonize humans. More broadly, our results indicate that host specificity is a lineage-specific trait that can rapidly evolve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human nares are the main niche of Staphylococcus aureus, but farm animals can be also infected (cows) or colonized (pigs) constituting significant reservoir of this pathogen. Previous studies indicated that human and animal strains are quite distinct but the extent of cross-species specialization and transmission remains largely unknown. However, recent reports from several European countries as well as USA and Canada have indicated that employment in farming is an emerging risk factor for MRSA carriage. Pigs were found to be frequently colonized with MRSA, usually with a strain belonging to CC398. It is not known whether animal-human transmission was specific to this particular MRSA strain. S. aureus isolates from cow mastitis and pig colonization isolates were collected in parallel to nasal swab isolates from the animals' caretakers. The isolates were genotyped by AFLP, spatyping, and when appropriate by MLST. The isolates from cow mastitis were genetically uniform in comparison with human isolates. They were quite distinct from farmers\' carriage isolates, indicating pronounced hostspecialization. However, several cases where an infected cow and a colonized farmer had the same strain were detected, including one farm where two farmers were colonized and two cows were infected with MRSA belonging to CC398. Pig isolates were genetically more diverse than cow isolates. They were different from both human and cow isolates with one notable exception. Large fraction of pigs (20%) and pig caretakers (50%) were colonized with isolates belonging to CC398, majority of which were MSSA (2 cases of MRSA). These results indicate that host specialization in S. aureus is quite pronounced. Transmission between humans and farm animals was consequently quite rare. Both MSSA and MRSA strains belonging to otherwise pig-specific CC398 had increased capacity to colonize humans. Study of the genetic factors responsible for host specialization is underway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.