9 resultados para CO2 emissions reduction

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RésuméCette thèse traite de l'utilisation des concepts de Symbiose Industrielle dans les pays en développement et étudie le potentiel de cette stratégie pour stimuler un développement régional durable dans les zones rurales d'Afrique de l'Ouest. En particulier, lorsqu'une Symbiose Industrielle est instaurée entre une usine et sa population alentour, des outils d'évaluation sont nécessaires pour garantir que le projet permette d'atteindre un réel développement durable. Les outils existants, développés dans les pays industrialisés, ne sont cependant pas complètement adaptés pour l'évaluation de projets dans les pays en développement. En effet, les outils sont porteurs d'hypothèses implicites propres au contexte socio-économique dans lequel ils ont été conçus.L'objectif de cette thèse est de développer un cadre méthodologique pour l'évaluation de la durabilité de projets de Symbiose Industrielle dans les pays en développement.Pour ce faire, je m'appuie sur une étude de cas de la mise en place d'une Symbiose Industrielle au nord du Nigéria, à laquelle j'ai participé en tant qu'observatrice dès 2007. AshakaCem, une usine productrice de ciment du groupe Lafarge, doit faire face à de nombreuses tensions avec la population rurale alentour. L'entreprise a donc décidé d'adopter une nouvelle méthode inspirée des concepts de Symbiose Industrielle. Le projet consiste à remplacer jusqu'à 10% du carburant fossile utilisé pour la cuisson de la matière crue (calcaire et additifs) par de la biomasse produite par les paysans locaux. Pour ne pas compromettre la fragile sécurité alimentaire régionale, des techniques de lutte contre l'érosion et de fertilisation naturelle des sols sont enseignées aux paysans, qui peuvent ainsi utiliser la culture de biomasse pour améliorer leurs cultures vivrières. A travers cette Symbiose Industrielle, l'entreprise poursuit des objectifs sociaux (poser les bases nécessaires à un développement régional), mais également environnementaux (réduire ses émissions de CO2 globales) et économiques (réduire ses coûts énergétiques). Elle s'ancre ainsi dans une perspective de développement durable qui est conditionnelle à la réalisation du projet.A travers l'observation de cette Symbiose et par la connaissance des outils existants je constate qu'une évaluation de la durabilité de projets dans les pays en développement nécessite l'utilisation de critères d'évaluation propres à chaque projet. En effet, dans ce contexte, l'emploi de critères génériques apporte une évaluation trop éloignée des besoins et de la réalité locale. C'est pourquoi, en m'inspirant des outils internationalement reconnus comme l'Analyse du Cycle de Vie ou la Global Reporting Initiative, je définis dans cette thèse un cadre méthodologique qui peut, lui, être identique pour tous les projets. Cette stratégie suit six étapes, qui se réalisent de manière itérative pour permettre une auto¬amélioration de la méthodologie d'évaluation et du projet lui-même. Au cours de ces étapes, les besoins et objectifs en termes sociaux, économiques et environnementaux des différents acteurs sont déterminés, puis regroupés, hiérarchisés et formulés sous forme de critères à évaluer. Des indicateurs quantitatifs ou qualitatifs sont ensuite définis pour chacun de ces critères. Une des spécificités de cette stratégie est de définir une échelle d'évaluation en cinq graduations, identique pour chaque indicateur, témoignant d'un objectif totalement atteint (++) ou pas du tout atteint (--).L'application de ce cadre méthodologique à la Symbiose nigériane a permis de déterminer quatre critères économiques, quatre critères socio-économiques et six critères environnementaux à évaluer. Pour les caractériser, 22 indicateurs ont été définis. L'évaluation de ces indicateurs a permis de montrer que le projet élaboré atteint les objectifs de durabilité fixés pour la majorité des critères. Quatre indicateurs ont un résultat neutre (0), et un cinquième montre qu'un critère n'est pas atteint (--). Ces résultats s'expliquent par le fait que le projet n'en est encore qu'à sa phase pilote et n'a donc pas encore atteint la taille et la diffusion optimales. Un suivi sur plusieurs années permettra de garantir que ces manques seront comblés.Le cadre méthodologique que j'ai développé dans cette thèse est un outil d'évaluation participatif qui pourra être utilisé dans un contexte plus large que celui des pays en développement. Son caractère générique en fait un très bon outil pour la définition de critères et indicateurs de suivi de projet en terme de développement durable.SummaryThis thesis examines the use of industrial symbiosis in developing countries and studies its potential to stimulate sustainable regional development in rural areas across Western Africa. In particular, when industrial symbiosis is instituted between a factory and the surrounding population, evaluation tools are required to ensure the project achieves truly sustainable development. Existing tools developed in industrialized countries are not entirely suited to assessing projects in developing countries. Indeed, the implicit hypotheses behind such tools reflect the socioeconomic context in which they were designed. The goal of this thesis is to develop a methodological framework for evaluating the sustainability of industrial symbiosis projects in developing countries.To accomplish this, I followed a case study about the implementation of industrial symbiosis in northern Nigeria by participating as an observer since 2007. AshakaCem, a cement works of Lafarge group, must confront many issues associated with violence committed by the local rural population. Thus, the company decided to adopt a new approach inspired by the concepts of industrial symbiosis.The project involves replacing up to 10% of the fossil fuel used to heat limestone with biomass produced by local farmers. To avoid jeopardizing the fragile security of regional food supplies, farmers are taught ways to combat erosion and naturally fertilize the soil. They can then use biomass cultivation to improve their subsistence crops. Through this industrial symbiosis, AshakaCem follows social objectives (to lay the necessary foundations for regional development), but also environmental ones (to reduce its overall CO2 emissions) and economical ones (to reduce its energy costs). The company is firmly rooted in a view of sustainable development that is conditional upon the project's execution.By observing this symbiosis and by being familiar with existing tools, I note that assessing the sustainability of projects in developing countries requires using evaluation criteria that are specific to each project. Indeed, using generic criteria results in an assessment that is too far removed from what is needed and from the local reality. Thus, by drawing inspiration from such internationally known tools as Life Cycle Analysis and the Global Reporting Initiative, I define a generic methodological framework for the participative establishment of an evaluation methodology specific to each project.The strategy follows six phases that are fulfilled iteratively so as to improve the evaluation methodology and the project itself as it moves forward. During these phases, the social, economic, and environmental needs and objectives of the stakeholders are identified, grouped, ranked, and expressed as criteria for evaluation. Quantitative or qualitative indicators are then defined for each of these criteria. One of the characteristics of this strategy is to define a five-point evaluation scale, the same for each indicator, to reflect a goal that was completely reached (++) or not reached at all (--).Applying the methodological framework to the Nigerian symbiosis yielded four economic criteria, four socioeconomic criteria, and six environmental criteria to assess. A total of 22 indicators were defined to characterize the criteria. Evaluating these indicators made it possible to show that the project meets the sustainability goals set for the majority of criteria. Four indicators had a neutral result (0); a fifth showed that one criterion had not been met (--). These results can be explained by the fact that the project is still only in its pilot phase and, therefore, still has not reached its optimum size and scope. Following up over several years will make it possible to ensure these gaps will be filled.The methodological framework presented in this thesis is a highly effective tool that can be used in a broader context than developing countries. Its generic nature makes it a very good tool for defining criteria and follow-up indicators for sustainable development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrically assisted bicycles (EAB) are flourishing in cities throughout the world and capitalize on ecological and practical advantages, helping in the fight against pollution, CO2 emissions and traffic jam. Human power is necessary to activate the electrical support, so that it equals to a moderate intensity physical activity (> 3 MET), or a vigorous one on hilly courses (>6 MET). The ecological benefits are obvious and transportation departments tend to support citizens who purchase one. EAB offer increased mobility at speeds of 15 to 25 km/h depending on hills and fitness of the rider, but could cause more accidents. EAB is linked to a real physical activity beneficial for health, but potentially more dangerous than a traditional bicycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life cycle analyses (LCA) approaches require adaptation to reflect the increasing delocalization of production to emerging countries. This work addresses this challenge by establishing a country-level, spatially explicit life cycle inventory (LCI). This study comprises three separate dimensions. The first dimension is spatial: processes and emissions are allocated to the country in which they take place and modeled to take into account local factors. Emerging economies China and India are the location of production, the consumption occurs in Germany, an Organisation for Economic Cooperation and Development country. The second dimension is the product level: we consider two distinct textile garments, a cotton T-shirt and a polyester jacket, in order to highlight potential differences in the production and use phases. The third dimension is the inventory composition: we track CO2, SO2, NO (x), and particulates, four major atmospheric pollutants, as well as energy use. This third dimension enriches the analysis of the spatial differentiation (first dimension) and distinct products (second dimension). We describe the textile production and use processes and define a functional unit for a garment. We then model important processes using a hierarchy of preferential data sources. We place special emphasis on the modeling of the principal local energy processes: electricity and transport in emerging countries. The spatially explicit inventory is disaggregated by country of location of the emissions and analyzed according to the dimensions of the study: location, product, and pollutant. The inventory shows striking differences between the two products considered as well as between the different pollutants considered. For the T-shirt, over 70% of the energy use and CO2 emissions occur in the consuming country, whereas for the jacket, more than 70% occur in the producing country. This reversal of proportions is due to differences in the use phase of the garments. For SO2, in contrast, over two thirds of the emissions occur in the country of production for both T-shirt and jacket. The difference in emission patterns between CO2 and SO2 is due to local electricity processes, justifying our emphasis on local energy infrastructure. The complexity of considering differences in location, product, and pollutant is rewarded by a much richer understanding of a global production-consumption chain. The inclusion of two different products in the LCI highlights the importance of the definition of a product's functional unit in the analysis and implications of results. Several use-phase scenarios demonstrate the importance of consumer behavior over equipment efficiency. The spatial emission patterns of the different pollutants allow us to understand the role of various energy infrastructure elements. The emission patterns furthermore inform the debate on the Environmental Kuznets Curve, which applies only to pollutants which can be easily filtered and does not take into account the effects of production displacement. We also discuss the appropriateness and limitations of applying the LCA methodology in a global context, especially in developing countries. Our spatial LCI method yields important insights in the quantity and pattern of emissions due to different product life cycle stages, dependent on the local technology, emphasizing the importance of consumer behavior. From a life cycle perspective, consumer education promoting air-drying and cool washing is more important than efficient appliances. Spatial LCI with country-specific data is a promising method, necessary for the challenges of globalized production-consumption chains. We recommend inventory reporting of final energy forms, such as electricity, and modular LCA databases, which would allow the easy modification of underlying energy infrastructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece, and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH,) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340degreesC for Nisyros and 470degreesC for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H-2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH, in both systems is controlled by aquifer temperature. N-2/(3) He and CH4/(3) He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO, by H, in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely- CO2/He-3 ratios and delta(13)C(CO2) values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism. Copyright (C) 2004 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide emissions from anthropic activities have accumulated in the atmosphere in excess of 800 Gigatons since preindustrial times, and are continuously increasing. Among other strategies, CO2 capture and storage is one option to mitigate the emissions from large point sources. In addition, carbon dioxide extraction from ambient air is assessed to reduce the atmospheric concentration of CO2. Both direct and indirect (through photosynthesis) pathways are possible. Geological sequestration has significant disadvantages (high cost, low public acceptance, long term uncertainty) whereas carbon dioxide recycling (or utilization) is more consistent with the basic principle of industrial ecology, almost closing material cycles. In this article, a series of technologies for CO2 capture and valorization is described as integrated and optimized pathways. This integration increases the environmental and economic benefits of each technology. Depending on the source of carbon dioxide, appropriate capture and valorization processes are evaluated based on material and energy constraints.