14 resultados para CHROMOSOMAL HEMOLYSIN

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: This study describes the prevalence, associated anomalies, and demographic characteristics of cases of multiple congenital anomalies (MCA) in 19 population-based European registries (EUROCAT) covering 959,446 births in 2004 and 2010. METHODS: EUROCAT implemented a computer algorithm for classification of congenital anomaly cases followed by manual review of potential MCA cases by geneticists. MCA cases are defined as cases with two or more major anomalies of different organ systems, excluding sequences, chromosomal and monogenic syndromes. RESULTS: The combination of an epidemiological and clinical approach for classification of cases has improved the quality and accuracy of the MCA data. Total prevalence of MCA cases was 15.8 per 10,000 births. Fetal deaths and termination of pregnancy were significantly more frequent in MCA cases compared with isolated cases (p < 0.001) and MCA cases were more frequently prenatally diagnosed (p < 0.001). Live born infants with MCA were more often born preterm (p < 0.01) and with birth weight < 2500 grams (p < 0.01). Respiratory and ear, face, and neck anomalies were the most likely to occur with other anomalies (34% and 32%) and congenital heart defects and limb anomalies were the least likely to occur with other anomalies (13%) (p < 0.01). However, due to their high prevalence, congenital heart defects were present in half of all MCA cases. Among males with MCA, the frequency of genital anomalies was significantly greater than the frequency of genital anomalies among females with MCA (p < 0.001). CONCLUSION: Although rare, MCA cases are an important public health issue, because of their severity. The EUROCAT database of MCA cases will allow future investigation on the epidemiology of these conditions and related clinical and diagnostic problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular characterization of balanced chromosomal rearrangements have always been of advantage in identifying disease-causing genes. Here, we describe the breakpoint mapping of a de novo balanced translocation t(7;12)(q11.22;q14.2) in a patient presenting with a failure to thrive associated with moderate mental retardation, facial anomalies, and chronic constipation. The localization of the breakpoints and the co-occurrence of Williams-Beuren syndrome and 12q14 microdeletion syndrome phenotypes suggested that the expression of some of the dosage-sensitive genes of these two segmental aneuploidies were modified in cells of the proposita. However, we were unable to identify chromosomes 7 and/or 12-mapping genes that showed disturbed expression in the lymphoblastoids of the proposita. This case showed that position-effect might operate in some tissues, but not in others. It also illustrates the overlap of phenotypes presented by patients with the recently described 12q14 structural rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SummaryEwing's sarcoma family tumors (ESFT) are the second most frequent cancer of bone in adolescents and young adults. ESFT are characterized by a chromosomal translocation that involves the 5' segment of the EWSR1 gene and the 3' segment of an ets transcription factor family member gene. In 85% of cases the chromosomal translocation generates the fusion protein EWSR1-FLI-1. Recent work from our laboratory identified mesenchymal stem cells (MSC) as the putative cell of origin of ESFT and characterized a CD133+ subpopulation of ESFT cells with tumor initating and self-renewal capacity, known as cancer stem cells (CSC). MicroRNAs (miRNAs) are small non-coding RNA that regulate protein expression at the post-transcriptional level by either repressing translation or destabilizing mRNA. MiRNAs participate in several biological processes including cell proliferation and differentiation. We used miRNA expression profile comparison between MSC and ESFT cell lines and CD133+ ESFT cells and CD133" ESFT cells to investigate the role of miRNAs in ESFT pathogenesis. MiRNA expression profile comparison of MSC and ESFT cell lines identified 35 differentially expressed miRNAs. Among these was down-regulation of let-7a which results, in part, by the direct repression of let-7a-l promoter by EWSR1-FLI-1. Overexpression of let-7a in ESFT cells blocked ESFT tumorigenesis through an High-motility group AT-hook2 (HMGA2)-mediated mechanism.MiRNA profiling of CD133+ ESFT and CD 133" ESFT cells revealed a broad repression of miRNAs in CD133+ ESFT mediated by down-regulation of TARBP2, a central regulator of the miRNA maturation pathway. Down-regulation of TARBP2 in ESFT cell lines results in a miRNA expression profile reminescent of that observed in CD133+ ESFT and associated with increased tumorigenicity. Enhancement of TARBP2 activity using the antibiotic enoxacin or overexpression of miRNA-143 or miRNA-145, two targets of TARBP2, impaired ESFT CSC self-renewal and block ESFT tumorigenicity. Moreover in vivo administration of synthetic let- 7a, miRNA-143 or miRNA-145 blocks ESFT tumor growth.Thus, dysregulation of miRNA expression is a key feature in ESFT pathogenesis and restoration of their expressions might be used as a new therapeutic tool.RésuméLe sarcome d'Ewing est la deuxième tumeur osseuse la plus fréquente chez l'enfant et le jeune adolescent. Le sarcome d'Ewing est caractérisé par une translocation chromosomique qui produit une protéine de fusion EWSR1-FLI-1. Des récents travaux ont identifié les cellules mésenchymateuses souches (MSC) comme étant les cellules à l'origine du sarcome d'Ewing ainsi qu'une sous-population de cellules exprimant le marqueur CD 133, dans le sarcome d'Ewing connu comme les cellules cancéreuses souches (CSC). Ces cellules ont la capacité d'initier la croissance tumorale et possèdent des propriétés d'auto-renouvellement. Les microRNAs (miRNAs) sont de petits ARN qui ne codent pas pour des protéines et qui contrôlent l'expression des protéines en bloquant la traduction ou en dégradant l'ARNm. Les miRNAs participent à différents processus biologiques comme la prolifération et la différenciation cellulaires.Le but de ce travail est d'étudier le rôle des miRNAs dans le sarcome d'Ewing. Un profil d'expression de miRNAs entre les MSC et des lignées cellulaires de sarcome d'Ewing a mis en évidence 35 miRNAs différemment exprimés. Parmi ceux-ci, la répression de let-7a est liée à la répression directe du promoteur de let-7a-l par EWSR-FLI-1. La sur-expression de let-7a dans des lignées cellulaires de sarcome d'Ewing inhibe leur croissance tumorale. Cette inhibition de croissance tumorale est régulée par la protéine high-motility group AT-hook2 (HMGA2).Un profil d'expression de miRNAs entre les cellules du sarcome d'Ewing CD133+ et CD133" montre une sous-expression d'un grand nombre de miRNAs dans les cellules CD133+ par rapport aux cellules CD133". Cette différence d'expression de miRNAs est due à la répression du gène TARBP2 qui participe à la maturation des miRNAs. La suppression de TARBP2 dans des cellules d'Ewing induit un profil d'expression de miRNAs similaire aux cellules CD133+ du sarcome d'Ewing et augmente la tumorigenèse des lignées cellulaires. De plus l'utilisation d'enoxacin, une molécule qui augmente l'activité de TARBP2 ou la sur- expression des miRNA143 ou miRNA-145 dans les CSC du sarcome d'Ewing bloque l'auto- renouvellement des cellules et la croissance tumorale. Finalement, l'administration de let-7a, miRNA-143 ou miRNA-145, dans des souris bloque la croissance du sarcome d'Ewing. Ces résultats indiquent que la dysrégulation des miRNAs participe à la pathogenèse du sarcome d'Ewing et que les miRNAs peuvent être utilisés comme des agents thérapeutiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is one of the most intensively studied cancer types, partly because of its high prevalence but also because of the existence of its precursor lesions, tubular or villous adenomas, and more recently (sessile) serrated adenomas, which can be detected endoscopically and removed. The morphological steps in the adenoma-carcinoma sequence have been elucidated at a molecular level, which has been facilitated by identification of the genes responsible for familial intestinal cancer. However, apart from early detection of familial forms of CRC and its use in genetic counseling, until recently such detailed molecular knowledge has had little impact on clinical management of the disease. This has dramatically changed in the last decade. With drugs specifically targeting the epidermal growth factor receptor (EGFR) having been shown effective in CRC, mechanisms responsible for resistance have been explored. The finding that KRAS mutated cancers do not respond to anti-EGFR treatment has had a profound impact on clinical management and on molecular diagnostics of CRC. Additional genetic tests for mutations in NRAS, BRAF and PIK3CA contribute to determining who to treat, and others will follow. New therapies effective in patients with advanced CRC are under investigation. Remaining burning questions for optimal management are which patients will relapse after resection of the primary tumor and which patients will respond to the standard 5FU-oxaliplatin adjuvant treatment regimen. Predictive tests to address these issues are eagerly awaited. New classifications of CRC, based on molecular parameters, are emerging, and we will be confronted with new subtypes of CRC, for which the definition is based on combinations of gene expression patterns, chromosomal alterations, gene mutations and epigenetic characteristics. This will be instrumental in designing new approaches for therapy but will also be translated into molecular diagnostics. Both will contribute to improved clinical management of CRC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene copies that stem from the mRNAs of parental source genes have long been viewed as evolutionary dead-ends with little biological relevance. Here we review a range of recent studies that have unveiled a significant number of functional retroposed gene copies in both mammalian and some non-mammalian genomes. These studies have not only revealed previously unknown mechanisms for the emergence of new genes and their functions but have also provided fascinating general insights into molecular and evolutionary processes that have shaped genomes. For example, analyses of chromosomal gene movement patterns via RNA-based gene duplication have shed fresh light on the evolutionary origin and biology of our sex chromosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS: We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS: In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION: We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbapenemases should be accurately and rapidly detected, given their possible epidemiological spread and their impact on treatment options. Here, we developed a simple, easy and rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based assay to detect carbapenemases and compared this innovative test with four other diagnostic approaches on 47 clinical isolates. Tandem mass spectrometry (MS-MS) was also used to determine accurately the amount of antibiotic present in the supernatant after 1 h of incubation and both MALDI-TOF and MS-MS approaches exhibited a 100% sensitivity and a 100% specificity. By comparison, molecular genetic techniques (Check-MDR Carba PCR and Check-MDR CT103 microarray) showed a 90.5% sensitivity and a 100% specificity, as two strains of Aeromonas were not detected because their chromosomal carbapenemase is not targeted by probes used in both kits. Altogether, this innovative MALDI-TOF-based approach that uses a stable 10-μg disk of ertapenem was highly efficient in detecting carbapenemase, with a sensitivity higher than that of PCR and microarray.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Williams-Beuren syndrome (WBS) is a neurodevelopmental and multisystemic disease that results from hemizygosity of approximately 25 genes mapping to chromosomal region 7q11.23. We report here the preliminary description of eight novel genes mapping within the WBS critical region and/or its syntenic mouse region. Three of these genes, TRIM50, TRIM73 and TRIM74, belong to the TRIpartite motif gene family, members of which were shown to be associated to several human genetic diseases. We describe the preliminary functional characterization of these genes and show that Trim50 encodes an E3 ubiquitin ligase, opening the interesting hypothesis that the ubiquitin-mediated proteasome pathway might be involved in the WBS phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study.