15 resultados para CEREBRAL MALARIA

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BackgroundThe great diversity of bat haemosporidians is being uncovered with the help of molecular tools. Yet most of these studies provide only snapshots in time of the parasites discovered. Polychromophilus murinus, a malaria-like blood parasite, specialised on temperate-zone bats is a species that is being `rediscovered¿. This study describes the infection dynamics over time and between host sex and age classes.MethodsFor three years we followed the members of three breeding colonies of Myotis daubentonii in Western Switzerland and screened them for the prevalence and parasitemia of P. murinus using both molecular tools and traditional microscopy. In order to identify more susceptible classes of hosts, we measured, sexed and aged all individuals. During one year, we additionally measured body temperature and haematocrit values.ResultsJuvenile bats demonstrated much higher parasitemia than any other age class sampled, suggesting that first exposure to the parasite is very early in life during which infections are also at their most intense. Moreover, in subadults there was a clear negative correlation between body condition and intensity of infection, whereas a weak positive correlation was observed in adults. Neither body temperature, nor haematocrit, two proxies used for pathology, could be linked to intensities of infection.ConclusionIf both weaker condition and younger age are associated with higher infection intensity, then the highest selection pressure exerted by P. murinus should be at the juvenile stage. Confusion over the identities and nomenclature of malarial-like parasites requires that molecular barcodes are coupled to accurate morphological descriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inadequate intraoperative cerebral perfusion has been suggested as a possible cause of postoperative cognitive dysfunction (POCD). Methods: We investigated 35 patients aged 65 or older undergoing elective major non-cardiac surgery under standardized general anaesthesia (thiopental, sevoflurane, fentanyl, atracurium). Intraoperative cerebral perfusion was monitored with transcranial Doppler, and near-infrared spectroscopy (NIRS). Arterial blood pressure was monitored continuously with a Finapres device. Mx, an index allowing continuous monitoring of cerebrovascular autoregulation based on the changes in mean arterial blood pressure (MAP) and cerebral blood flow velocity was calculated. Mx >0.5 was defined as disturbed cerebrovascular autoregulation. Cognitive function was measured preoperatively and 7 days postoperatively using the CERAD-NAB Plus test battery. A postoperative decline >1 z-score in at least two of the tested domains was defined as POCD. Data are shown as mean } SD. Results: Mean age was 75 } 7 yrs. Sixteen patients (46%) developed POCD. These patients were older (77 } 8 vs 73 } 7 yrs), had lower MAP (77 } 12 vs 81 } 11 mm Hg), lower cerebral tissue oxygenation indices measured by NIRS (66.8 } 6.0 vs 68.6 } 4.3%) and less efficient cerebrovascular autoregulation (Mx 0.54 } 0.17 and 0.44 } 0.22) than patients without POCD. Disturbed intraoperative cerebrovascular autoregulation was found more often (56 vs 37%) in patients with POCD. However, none of these differences reached statistical significance. Conclusions: Our data show a trend towards subtle changes in intraoperative cerebral perfusion in elderly patients who develop POCD. However, a cause effect relationship must not be assumed and a greater number of patients needs to be investigated patients. However, more patients need to be investigated to confirm and characterize these differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this educational poster is to introduce the technical principles of cerebral perfusion CT and to provide examples of its clinical applications and potential limitations in the everyday emergency practice. Methods and materials: Cerebral perfusion CT is a well established investigatory tool for many vascular and parenchymal brain dysfunctions. CT perfusion maps allow a semiquantitative assessment of cerebral perfusion. Results: Currently, cerebral perfusion CT has a pivotal role in differentiating reversible from irreversible ischemic parenchymal insult besides its integral role in grading vasospasm after subarachnoid hemorrhage. Furthermore, cerebral perfusion CT can be coupled to acetazolamide administration in order to assess the cerebrovascular reserve capacity before performing extra-/intra-cranial bypass surgery in patients with cerebral vascular insufficiency. Cerebral perfusion CT can also identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS in order to predict the final outcome regarding the late occurrence of irreversible parenchymal damage. Cerebral Perfusion CT is also able to detect focal parenchymal perfusion abnormalities in acute epileptic seizures. Conclusion: Cerebral perfusion CT can be integrated in the management of many vascular, traumatic and functional disorders of the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.