72 resultados para CATALYTIC TRIAD
em Université de Lausanne, Switzerland
Resumo:
Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.-Crisante, G., Battista, L., Iwaszkiewicz, J., Nesca, V., Mérillat, A.-M., Sergi, C., Zoete, V., Frateschi, S., Hummler, E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
Brooke-Spiegler syndrome, familial cylindromatosis, and familial trichoepithelioma are autosomal-dominant genetic predispositions for benign tumors of skin appendages caused by mutations in the CYLD gene localized on chromosome 16q12-q13. The encoded protein functions as ubiquitin-specific protease (UBP), which negatively regulates NF-kappaB and c-Jun N-terminal kinase (JNK) signaling. We investigated five families affected with these skin neoplasms and identified four premature stop codons and the novel missense mutation D681G in a family in which 11 of 12 investigated tumors were trichoepitheliomas. CYLD protein harboring this missense mutation had a significant reduced ability to inhibit TNF receptor-associated factor (TRAF)2- and TRAF6-mediated NF-kappaB activation, tumor necrosis factor-alpha (TNFalpha)-induced JNK signaling, and to deubiquitinate TRAF2. CYLD-D681G was coimmunoprecipitated by TRAF2, but was unable to cleave K63-linked polyubiquitin chains. Aspartic acid 681 is highly conserved in CYLD homologues and other members of the UBP family, but does not belong to the Cys and His boxes providing the CYLD catalytic triad (Cys601, His871, and Asp889). As reported previously, the homologous residue D295 of HAUSP/USP-7 forms a hydrogen bond with the C-terminal end of ubiquitin and is important for the enzymatic activity. These results underline that D681 in CYLD is required for cleavage of K63-linked polyubiquitin chains.
Resumo:
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Resumo:
The skin is the largest organ of the human body and protects it from water loss and mechanical damage. This barrier function is mainly provided by the epidermis, the outermost layer of the skin. This balance is regulated by several factors, including serine proteases, serine protease inhibitors and protease target substrates, such as receptors. Any mutations or alterations in the expression of these factors can lead to skin diseases. One of the players in this skin balance is the serine protease CAP1/Prss8, whose over-expression causes ichthyosis, hyperplasia and inflammation. This phenotype can be completely restored in the absence of PAR2 (protease-activated receptor 2) (Frateschi et al., 2011). During my thesis, I demonstrated that CAP1/Prss8 induces skin disease even if its catalytic triad is mutated. Additionally, I demonstrated an inhibitory effect of the serine protease-inhibitor nexin-1 (also called serpinE2, PN-1) on CAP1/Prss8, since nexin-1 negated the effects of both catalytically active and inactive CAP1/Prss8 over-expression. Indeed, CAP1/Prss8 and nexin-1 interact in vitro, but independent of the catalytic triad of CAP1/Prss8. These results demonstrate a novel mechanism of interaction between CAP1/Prss8 and nexin-1, and indicate that the catalytic triad of CAP1/Prss8 is dispensable for nexin-1 inhibition and PAR2 activation. These observations in vivo and in vitro could be helpful to specifically target drugs to treat ichthyoses-like skin diseases, like e.g. atopic dermatitis. - La peau est l'un des organes les plus importants du corps humain au regard de sa surface et de sa masse. Ses principales fonctions sont de nous protéger contre l'entrée de pathogènes et de former une barrière imperméable qui empêche la déshydratation. Ces fonctions sont principalement assurées par l'épiderme, la couche la plus superficielle de la peau, et garanties par plusieurs "acteurs", comme par exemple les sérine-protéases, les inhibiteurs de sérine- protéases ou les protéases cibles comme les récepteurs. Toute mutation ou altération de l'un de ces "acteurs" peut aboutir au déclanchement de maladies de la peau. Pour mieux comprendre les conséquences biologiques résultant d'une altération d'expression de CAP1/Prss8, une serine-protéase normalement exprimée au niveau de l'épiderme, nous avons généré des souris transgéniques surexprimant CAP1/Prss8 au niveau de la peau. Ces dernières présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et des prurits conséquents. Ces symptômes disparaissent si le gène du récepteur PAR2, qui régule l'activité des cellules de l'épiderme, est inactivé. Dans le but de vérifier si le phénotype observé chez les souris CAP1/Prss8 résulte de l'action du site catalytique de CAP1/Prss8, nous avons généré des souris CAP1/Prss8 chez lesquelles nous avons muté les trois acides aminés du site catalytique en alanine. Etonnement ces souris ont développé les mêmes problèmes de peau que les souris CAP1/Prss8, démontrant que l'effet de CAP1/Prss8, dans ce modèle animal, n'est pas lié à son site catalytique. Nous avons également montré in vivo, que la sérine-protéase nexin-1 (aussi appelée SERPINE2, PN-1) est capable d'exercer un effet inhibiteur sur CAP1/Prss8 indépendamment de l'activité du site catalytique de CAP1/Prss8. De plus, nous avons remarqué in vitro que CAP1/Prss8 et nexin-1 interagissent bien que la triade catalytique de CAP1/Prss8 soit enzymatiquement inactivée. Ces observations, in vivo et in vitro, pourraient être utilisées dans l'élaboration de médicaments contenant nexin-1, pour le traitement de pathologies de la peau telles l'ichthyose et la dermatite atopique.
Resumo:
Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).
Resumo:
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.
Resumo:
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.
Resumo:
The practitioner, as well as specialist such as gynecologist and endocrinologist, may face in their office women with eating disorders, abnormalities of menstrual cycles and low bone mass, which may be the first hints of the female athlete triad. In these situations, the practitioner may search other findings of these triad by looking at some particular physical findings and by using appropriate questionnaire. In some advanced forms of this triad specific abnormalities of eating disorders (anorexia and boulimia) may be present as well as amenorrhea and osteoporosis, which may disturb the well-being and cause health damages of women practising sport either as amateur or in a elite setting. An appropriate handling of such disorders has to be proposed to these women.
Resumo:
Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the de novo synthesis of glutathione (GSH). The catalytic subunit (GCLC) of GCL contains a GAG trinucleotide-repeat (TNR) polymorphism within the 5'-untranslated region (5'-UTR) that has been associated with various human disorders. Although several studies suggest that this variation influences GSH content, its implication for GCLC expression remains unknown. To better characterize its functional significance, we performed reporter gene assays with constructs containing the complete GCLC 5'-UTR upstream of a luciferase gene. Transfection of these vectors into various human cell lines did not reveal any significant differences between 7, 8, 9, or 10 GAG repeats, under either basal or oxidative stress conditions. To correlate these results with the previously described down-regulation induced by the C-129T GCLC promoter polymorphism, combinations of both variations were tested. Interestingly, the -129T allele down-regulates gene expression when combined with 7 GAG but not with 8, 9, or 10 GAG TNRs. This observation was confirmed in primary fibroblast cells, in which the combination of GAG TNR 7/7 and -129C/T genotypes decreased the GCLC protein level. These results provide evidence that interaction of the two variations can efficiently impair GCLC expression and thus suggest its involvement in the pathogenesis of diseases related to GSH metabolism.
Resumo:
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru-3(CO)(12)) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru-2(CO)(4)((2)-(2)-O2CC3F7)(2)(L)(2) (1a, L=C5H5N; 1b, L=PTA; 1c, L=PPh3) and Ru-2(CO)(4)((2)-(2)-O2CC11F23)(2)(L)(2) (2a, L=C5H5N; 2b, L=PTA; 2c, L=PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru-2(CO)(4)((2)-(2)-O2CC3H7)(2)(PPh3)(2) (3) and Ru-2(CO)(4)((2)-(2)-O2CC11H23)(2)(PPh3)(2) (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.