3 resultados para C. Computational simulation

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.