27 resultados para Business Intelligence,Data Warehouse,Sistemi Informativi
em Université de Lausanne, Switzerland
Resumo:
There is an increasing awareness that the articulation of forensic science and criminal investigation is critical to the resolution of crimes. However, models and methods to support an effective collaboration between these partners are still poorly expressed or even lacking. Three propositions are borrowed from crime intelligence methods in order to bridge this gap: (a) the general intelligence process, (b) the analyses of investigative problems along principal perspectives: entities and their relationships, time and space, quantitative aspects and (c) visualisation methods as a mode of expression of a problem in these dimensions. Indeed, in a collaborative framework, different kinds of visualisations integrating forensic case data can play a central role for supporting decisions. Among them, link-charts are scrutinised for their abilities to structure and ease the analysis of a case by describing how relevant entities are connected. However, designing an informative chart that does not bias the reasoning process is not straightforward. Using visualisation as a catalyser for a collaborative approach integrating forensic data thus calls for better specifications.
Resumo:
The assessment of medical technologies has to answer several questions ranging from safety and effectiveness to complex economical, social, and health policy issues. The type of data needed to carry out such evaluation depends on the specific questions to be answered, as well as on the stage of development of a technology. Basically two types of data may be distinguished: (a) general demographic, administrative, or financial data which has been collected not specifically for technology assessment; (b) the data collected with respect either to a specific technology or to a disease or medical problem. On the basis of a pilot inquiry in Europe and bibliographic research, the following categories of type (b) data bases have been identified: registries, clinical data bases, banks of factual and bibliographic knowledge, and expert systems. Examples of each category are discussed briefly. The following aims for further research and practical goals are proposed: criteria for the minimal data set required, improvement to the registries and clinical data banks, and development of an international clearinghouse to enhance information diffusion on both existing data bases and available reports on medical technology assessments.
Resumo:
According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.
Resumo:
This study focuses on methylamphetamine (MA) seizures made by the Australian Federal Police (AFP) to investigate the use of chemical profiling in an intelligence perspective. Correlation coefficients were used to obtain a similarity degree between a population of linked samples and a population of unlinked samples. Although it was demonstrated that a general framework can be followed for the use of any forensic case data in an intelligence-led perspective, threshold values have to be re-evaluated for each type of illicit drug investigated. Unlike the results obtained in a previous study on 3,4-methylenedioxymethylamphetamine (MDMA) seizures, chemical profiles of MA samples coming from the same seizure showed relative inhomogeneity, limiting their ability to link seizures. Different hypotheses were investigated to obtain a better understanding of this inhomogeneity although no trend was observed. These findings raise an interesting discussion in regards to the homogeneity and representativeness of illicit drug seizures (for intelligence purposes). Further, it also provides some grounds to discuss the initial hypotheses and assumptions that most forensic science studies are based on.
Resumo:
Today's approach to anti-doping is mostly centered on the judicial process, despite pursuing a further goal in the detection, reduction, solving and/or prevention of doping. Similarly to decision-making in the area of law enforcement feeding on Forensic Intelligence, anti-doping might significantly benefit from a more extensive gathering of knowledge. Forensic Intelligence might bring a broader logical dimension to the interpretation of data on doping activities for a more future-oriented and comprehensive approach instead of the traditional case-based and reactive process. Information coming from a variety of sources related to doping, whether directly or potentially, would feed an organized memory to provide real time intelligence on the size, seriousness and evolution of the phenomenon. Due to the complexity of doping, integrating analytical chemical results and longitudinal monitoring of biomarkers with physiological, epidemiological, sociological or circumstantial information might provide a logical framework enabling fit for purpose decision-making. Therefore, Anti-Doping Intelligence might prove efficient at providing a more proactive response to any potential or emerging doping phenomenon or to address existing problems with innovative actions or/and policies. This approach might prove useful to detect, neutralize, disrupt and/or prevent organized doping or the trafficking of doping agents, as well as helping to refine the targeting of athletes or teams. In addition, such an intelligence-led methodology would serve to address doping offenses in the absence of adverse analytical chemical evidence.
Resumo:
The Wechsler Intelligence Scale for Children-fourth edition (i.e. WISC-IV) recognizes a four-factor scoring structure in addition to the Full Scale IQ (FSIQ) score: Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI) indices. However, several authors suggested that models based on the Cattell-Horn-Carroll (CHC) theory with 5 or 6 factors provided a better fit to the data than does the current four-factor solution. By comparing the current four-factor structure to CHC-based models, this research aimed to investigate the factorial structure and the constructs underlying the WISC-IV subtest scores with French-speaking Swiss children (N = 249). To deal with this goal, confirmatory factor analyses (CFAs) were conducted. Results showed that a CHC-based model with five factors better fitted the French-Swiss data than did the current WISC-IV scoring structure. All together, these results support the hypothesis of the appropriateness of the CHC model with French-speaking children.
Resumo:
A better integration of the information conveyed by traces within intelligence-led framework would allow forensic science to participate more intensively to security assessments through forensic intelligence (part I). In this view, the collection of data by examining crime scenes is an entire part of intelligence processes. This conception frames our proposal for a model that promotes to better use knowledge available in the organisation for driving and supporting crime scene examination. The suggested model also clarifies the uncomfortable situation of crime scene examiners who must simultaneously comply with justice needs and expectations, and serve organisations that are mostly driven by broader security objectives. It also opens new perspective for forensic science and crime scene investigation, by the proposal to follow other directions than the traditional path suggested by dominant movements in these fields.
Resumo:
Empirical literature on the analysis of the efficiency of measures for reducing persistent government deficits has mainly focused on the direct explanation of deficit. By contrast, this paper aims at modeling government revenue and expenditure within a simultaneous framework and deriving the fiscal balance (surplus or deficit) equation as the difference between the two variables. This setting enables one to not only judge how relevant the explanatory variables are in explaining the fiscal balance but also understand their impact on revenue and/or expenditure. Our empirical results, obtained by using a panel data set on Swiss Cantons for the period 1980-2002, confirm the relevance of the approach followed here, by providing unambiguous evidence of a simultaneous relationship between revenue and expenditure. They also reveal strong dynamic components in revenue, expenditure, and fiscal balance. Among the significant determinants of public fiscal balance we not only find the usual business cycle elements, but also and more importantly institutional factors such as the number of administrative units, and the ease with which people can resort to political (direct democracy) instruments, such as public initiatives and referendum.
Resumo:
Since 2008, Intelligence units of six states of the western part of Switzerland have been sharing a common database for the analysis of high volume crimes. On a daily basis, events reported to the police are analysed, filtered and classified to detect crime repetitions and interpret the crime environment. Several forensic outcomes are integrated in the system such as matches of traces with persons, and links between scenes detected by the comparison of forensic case data. Systematic procedures have been settled to integrate links assumed mainly through DNA profiles, shoemarks patterns and images. A statistical outlook on a retrospective dataset of series from 2009 to 2011 of the database informs for instance on the number of repetition detected or confirmed and increased by forensic case data. Time needed to obtain forensic intelligence in regard with the type of marks treated, is seen as a critical issue. Furthermore, the underlying integration process of forensic intelligence into the crime intelligence database raised several difficulties in regards of the acquisition of data and the models used in the forensic databases. Solutions found and adopted operational procedures are described and discussed. This process form the basis to many other researches aimed at developing forensic intelligence models.
Resumo:
Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.
Resumo:
The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders.
Resumo:
This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.
Resumo:
Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.
Resumo:
Medicine counterfeiting is a crime that has increased in recent years and now involves the whole world. Health and economic repercussions have led pharmaceutical industries and agencies to develop many measures to protect genuine medicines and differentiate them from counterfeits. Detecting counterfeit is chemically relatively simple for the specialists, but much more information can be gained from the analyses in a forensic intelligence perspective. Analytical data can feed criminal investigation and law enforcement by detecting and understanding the criminal phenomenon. Profiling seizures using chemical and packaging data constitutes a strong way to detect organised production and industrialised forms of criminality, and is the focus of this paper. Thirty-three seizures of a commonly counterfeited type of capsule have been studied. The results of the packaging and chemical analyses were gathered within an organised database. Strong linkage was found between the seizures at the different production steps, indicating the presence of a main counterfeit network dominating the market. The interpretation of the links with circumstantial data provided information about the production and the distribution of counterfeits coming from this network. This forensic intelligence perspective has the potential to be generalised to other types of products. This may be the only reliable approach to help the understanding of the organised crime phenomenon behind counterfeiting and to enable efficient strategic and operational decision making in an attempt to dismantle counterfeit network.