133 resultados para Building structures
em Université de Lausanne, Switzerland
Resumo:
RÉSUMÉ Cette thèse porte sur le développement de méthodes algorithmiques pour découvrir automatiquement la structure morphologique des mots d'un corpus. On considère en particulier le cas des langues s'approchant du type introflexionnel, comme l'arabe ou l'hébreu. La tradition linguistique décrit la morphologie de ces langues en termes d'unités discontinues : les racines consonantiques et les schèmes vocaliques. Ce genre de structure constitue un défi pour les systèmes actuels d'apprentissage automatique, qui opèrent généralement avec des unités continues. La stratégie adoptée ici consiste à traiter le problème comme une séquence de deux sous-problèmes. Le premier est d'ordre phonologique : il s'agit de diviser les symboles (phonèmes, lettres) du corpus en deux groupes correspondant autant que possible aux consonnes et voyelles phonétiques. Le second est de nature morphologique et repose sur les résultats du premier : il s'agit d'établir l'inventaire des racines et schèmes du corpus et de déterminer leurs règles de combinaison. On examine la portée et les limites d'une approche basée sur deux hypothèses : (i) la distinction entre consonnes et voyelles peut être inférée sur la base de leur tendance à alterner dans la chaîne parlée; (ii) les racines et les schèmes peuvent être identifiés respectivement aux séquences de consonnes et voyelles découvertes précédemment. L'algorithme proposé utilise une méthode purement distributionnelle pour partitionner les symboles du corpus. Puis il applique des principes analogiques pour identifier un ensemble de candidats sérieux au titre de racine ou de schème, et pour élargir progressivement cet ensemble. Cette extension est soumise à une procédure d'évaluation basée sur le principe de la longueur de description minimale, dans- l'esprit de LINGUISTICA (Goldsmith, 2001). L'algorithme est implémenté sous la forme d'un programme informatique nommé ARABICA, et évalué sur un corpus de noms arabes, du point de vue de sa capacité à décrire le système du pluriel. Cette étude montre que des structures linguistiques complexes peuvent être découvertes en ne faisant qu'un minimum d'hypothèses a priori sur les phénomènes considérés. Elle illustre la synergie possible entre des mécanismes d'apprentissage portant sur des niveaux de description linguistique distincts, et cherche à déterminer quand et pourquoi cette coopération échoue. Elle conclut que la tension entre l'universalité de la distinction consonnes-voyelles et la spécificité de la structuration racine-schème est cruciale pour expliquer les forces et les faiblesses d'une telle approche. ABSTRACT This dissertation is concerned with the development of algorithmic methods for the unsupervised learning of natural language morphology, using a symbolically transcribed wordlist. It focuses on the case of languages approaching the introflectional type, such as Arabic or Hebrew. The morphology of such languages is traditionally described in terms of discontinuous units: consonantal roots and vocalic patterns. Inferring this kind of structure is a challenging task for current unsupervised learning systems, which generally operate with continuous units. In this study, the problem of learning root-and-pattern morphology is divided into a phonological and a morphological subproblem. The phonological component of the analysis seeks to partition the symbols of a corpus (phonemes, letters) into two subsets that correspond well with the phonetic definition of consonants and vowels; building around this result, the morphological component attempts to establish the list of roots and patterns in the corpus, and to infer the rules that govern their combinations. We assess the extent to which this can be done on the basis of two hypotheses: (i) the distinction between consonants and vowels can be learned by observing their tendency to alternate in speech; (ii) roots and patterns can be identified as sequences of the previously discovered consonants and vowels respectively. The proposed algorithm uses a purely distributional method for partitioning symbols. Then it applies analogical principles to identify a preliminary set of reliable roots and patterns, and gradually enlarge it. This extension process is guided by an evaluation procedure based on the minimum description length principle, in line with the approach to morphological learning embodied in LINGUISTICA (Goldsmith, 2001). The algorithm is implemented as a computer program named ARABICA; it is evaluated with regard to its ability to account for the system of plural formation in a corpus of Arabic nouns. This thesis shows that complex linguistic structures can be discovered without recourse to a rich set of a priori hypotheses about the phenomena under consideration. It illustrates the possible synergy between learning mechanisms operating at distinct levels of linguistic description, and attempts to determine where and why such a cooperation fails. It concludes that the tension between the universality of the consonant-vowel distinction and the specificity of root-and-pattern structure is crucial for understanding the advantages and weaknesses of this approach.
Resumo:
The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits.
Resumo:
Structures built by animals are a widespread and ecologically important 'extended phenotype'. While its taxonomic diversity has been well described, factors affecting short-term evolution of building behavior within a species have received little experimental attention. Here we describe how, given the opportunity, wandering Drosophila melanogaster larvae often build long tunnels in agar substrates and embed their pupae within them. These embedded larvae are characterized by a longer egg-to-pupariation developmental time than larvae that pupate on the surface. Assuming that such building behaviors are likely to be energetically costly and/or time consuming, we hypothesized that they should evolve to be less pronounced under resource or time limitation. In accord with this prediction, larvae from populations evolved for 160 generations under a regime that combines larval malnutrition with limited developmental time dug shorter tunnels than larvae from control unselected populations. However, the proportion of larvae that embedded before pupation did not differ between the malnutrition-adapted and control populations, suggesting that tunnel length and likelihood of embedding before pupation are controlled by different genetic loci. The behaviors exhibited by wandering larvae of Drosophila melanogaster prior to pupation offer a model system to study evolution of animal building behaviors because the tunneling and embedding phenotypes are simple, facultative and highly variable.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.
Resumo:
The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
[Table des matières] Résumés. - 2. Introduction. - 3. Méthode pour l'enquête clientèle. - 4. Tendances pour l'ensemble des répondants: Caractéristiques sociodémographiques des usagers ; Consommation de substances et traitement de substitution ; Indicateurs de pratique de l'injection ; Activité sexuelle et comportement préventif; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 5. Tendances pour les injecteurs de drogue au cours de la vie: Caractéristiques sociodémographiques des usagers injecteurs de drogue ; Consommation de substances et traitement de substitution ; Indicateurs de pratique de l'injection ; Partage de seringues et de matériel ; Activité sexuelle et comportement préventif ; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 6. Tendances pour les consommateurs de drogue qui ne se sont jamais injecté de drogue au cours de la vie: Caractéristiques sociodémographiques des usagers non-injecteurs de drogue ; Consommation de substances et traitement de substitution ; Activité sexuelle et comportement préventif ; Indicateurs de l'état de santé ; Incarcération en lien avec la drogue et consommation en prison. - 7. Références