2 resultados para Brownian Motion with Returns to Zero
em Université de Lausanne, Switzerland
Resumo:
Shrews of the genus Crocidura from Sicily revealed a new karyotype from Europe: 2n = 36, NF = 56, NFa = 52. With reference to the revision of Vesmanis (1976), this shrew is provisionally attributed to C. caudata Miller, 1901 and it is proposed to call it the "Sicilian shrew". Its chromosome complement is similar to that of shrews from Canary Islands and a species from Burundi (Central Africa), suggesting that it might have split off from a line of Paleotropical origin. Following these findings, the modern concept of Mediterranean island colonization by shrews must be revised. The distinctive characteristics of Mediterranean shrews should also be revised.
Resumo:
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.