36 resultados para Bret Easton Ellis
em Université de Lausanne, Switzerland
Resumo:
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Resumo:
To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Cet article présente les résultats de la revue systématique: Ellis G, Whitehead MA, O'Neill D, Langhorne P, Robinson D. Comprehensive geriatric assessment for older adults admitted to hospital. Cochrane Database Syst Rev. 2011 Jul 6;(7):CD006211. PMID: 21735403.
Resumo:
Albuminuria and reduced glomerular filtration rate are manifestations of chronic kidney disease (CKD) that predict end-stage renal disease, acute kidney injury, cardiovascular disease and death. We hypothesized that SNPs identified in association with the estimated glomerular filtration rate (eGFR) would also be associated with albuminuria. Within the CKDGen Consortium cohort (n= 31 580, European ancestry), we tested 16 eGFR-associated SNPs for association with the urinary albumin-to-creatinine ratio (UACR) and albuminuria [UACR >25 mg/g (women); 17 mg/g (men)]. In parallel, within the CARe Renal Consortium (n= 5569, African ancestry), we tested seven eGFR-associated SNPs for association with the UACR. We used a Bonferroni-corrected P-value of 0.003 (0.05/16) in CKDGen and 0.007 (0.05/7) in CARe. We also assessed whether the 16 eGFR SNPs were associated with the UACR in aggregate using a beta-weighted genotype score. In the CKDGen Consortium, the minor A allele of rs17319721 in the SHROOM3 gene, known to be associated with a lower eGFR, was associated with lower ln(UACR) levels (beta = -0.034, P-value = 0.0002). No additional eGFR-associated SNPs met the Bonferroni-corrected P-value threshold of 0.003 for either UACR or albuminuria. In the CARe Renal Consortium, there were no associations between SNPs and UACR with a P< 0.007. Although we found the genotype score to be associated with albuminuria (P= 0.0006), this result was driven almost entirely by the known SHROOM3 variant, rs17319721. Removal of rs17319721 resulted in a P-value 0.03, indicating a weak residual aggregate signal. No alleles, previously demonstrated to be associated with a lower eGFR, were associated with the UACR or albuminuria, suggesting that there may be distinct genetic components for these traits.
Resumo:
Introduction: Les cancers du sein (CS) chez l'homme sont rares (1% des CS) et relativement mal connus. La répartition des types histologiques diffère dans ce groupe par rapport aux CS de la femme. Objectif: Nous rapportons quatre cas de carcinomes mammaires invasifs à différenciation neuroendocrine diagnostiqués chez des patients de sexe masculin de 1992 à 2012. Cas: Les patients étaient âgés de 80, 77, 59 et 56 ans. La tumeur s'est révélée par une masse palpable (2 cas) ou une douleur (2 cas). Le geste chirurgical a été une tumorectomie chez un patient, une mastectomie chez 3 patients (un an après le diagnostic pour l'un d'entre eux). Ces quatre CS correspondaient à des carcinomes invasifs de grade 1 ou 2 selon Elston et Ellis, avec composante de carcinome papillaire solide dans 2 cas, hormonosensibles, de statut HER2 négatif, avec expression de la chromogranine ou/et de la synaptophysine dans plus de 50% des cellules tumorales. Le statut ganglionnaire axillaire était positif dans 2 cas, non évalué dans 2 cas. Les dossiers cliniques (traitement adjuvant, survie) sont en cours d'analyse. Discussion: Les CS sont rares chez l'homme, en majorité hormonosensibles, de stade relativement avancé dans les grandes séries disponibles (1). Une différenciation neuroendocrine n'a été qu'exceptionnellement rapportée dans les CS de l'homme (2). Dans 2 des 4 cas rapportés ici elle est associée à une composante de carcinome papillaire solide. En l'absence de composante in situ, l'hypothèse d'une métastase est à considérer. Conclusion: L'incidence et les spécificités éventuelles de ce sous-groupe de CS, quant au pronostic et à la réponse aux traitements, restent à déterminer. Références : 1. Anderson WF et al. JCO 2010;28:232-9 ; 2. Potier B et al. Ann Chirur Plast 2010.
Resumo:
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Resumo:
Geographic differences in frequency and azole resistance among Candida glabrata may impact empiric antifungal therapy choice. We examined geographic variation in isolation and azole susceptibility of C. glabrata. We examined 23 305 clinical isolates of C. glabrata during ARTEMIS DISK global surveillance. Susceptibility testing to fluconazole and voriconazole was assessed by disk diffusion, and the results were grouped by geographic location: North America (NA) (2470 isolates), Latin America (LA) (2039), Europe (EU) (12 439), Africa and the Middle East (AME) (728), and Asia-Pacific (AP) (5629). Overall, C. glabrata accounted for 11.6% of 201 653 isolates of Candida and varied as a proportion of all Candida isolated from 7.4% in LA to 21.1% in NA. Decreased susceptibility (S) to fluconazole was observed in all geographic regions and ranged from 62.8% in AME to 76.7% in LA. Variation in fluconazole susceptibility was observed within each region: AP (range, 50-100% S), AME (48-86.9%), EU (44.8-88%), LA (43-92%), and NA (74.5-91.6%). Voriconazole was more active than fluconazole (range, 82.3-84.2% S) with similar regional variation. Among 22 sentinel sites participating in ARTEMIS from 2001 through 2007 (84 140 total isolates, 8163 C. glabrata), the frequency of C. glabrata isolation increased in 14 sites and the frequency of fluconazole resistance (R) increased in 11 sites over the 7-year period of study. The sites with the highest cumulative rates of fluconazole R were in Poland (22% R), the Czech Republic (27% R), Venezuela (27% R), and Greece (33% R). C. glabrata was most often isolated from blood, normally sterile body fluids and urine. There is substantial geographic and institutional variation in both frequency of isolation and azole resistance among C. glabrata. Prompt species identification and fluconazole susceptibility testing are necessary to optimize therapy for invasive candidiasis.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
Resumo:
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.