5 resultados para Brazilian Spotted Fever

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

African tick-bite fever (ATBF) is a newly described spotted fever rickettsiosis that frequently presents with multiple eschars in travelers returning from sub-Saharan Africa and, to a lesser extent, from the West Indies. It is caused by the bite of an infected Amblyomma tick, whose hunting habits explain the typical presence of multiple inoculation skin lesions and the occurrence of clustered cases. The etiological agent of ATBF is Rickettsia africae, an emerging tick-borne pathogenic bacterium. We describe herein a cluster of five cases of ATBF occurring in Swiss travelers returning from South Africa. The co-incidental infections in these five patients and the presence of multiple inoculation eschars, two features pathognomonic of this rickettsial disease, suggested the diagnosis of ATBF. Indeed, the presence of at least one inoculation eschar is observed in 53-100% of cases and multiple eschars in 21-54%. Two patients presented regional lymphadenitis and one a mild local lymphangitis. Though a cutaneous rash is described in 15-46% of cases, no rash was observed in our series. ATBF was confirmed by serology. Thus, ATBF has recently emerged as one of the most important causes of flu-like illness in travelers returning from Southern Africa. The presence of one or multiple eschars of inoculation is an important clinical clue to the diagnosis. It can be confirmed by serology or by PCR of a biopsy of the eschar. Culture can also be done in reference laboratories. Dermatologists and primary care physicians should know this clinical entity, since an inexpensive and efficient treatment is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular diagnosis using real-time polymerase chain reaction (PCR) may allow earlier diagnosis of rickettsiosis. We developed a duplex real-time PCR that amplifies (1) DNA of any rickettsial species and (2) DNA of both typhus group rickettsia, that is, Rickettsia prowazekii and Rickettsia typhi. Primers and probes were selected to amplify a segment of the 16S rRNA gene of Rickettsia spp. for the pan-rickettsial PCR and the citrate synthase gene (gltA) for the typhus group rickettsia PCR. Analytical sensitivity was 10 copies of control plasmid DNA per reaction. No cross-amplification was observed when testing human DNA and 22 pathogens or skin commensals. Real-time PCR was applied to 16 clinical samples. Rickettsial DNA was detected in the skin biopsies of three patients. In one patient with severe murine typhus, the typhus group PCR was positive in a skin biopsy from a petechial lesion and seroconversion was later documented. The two other patients with negative typhus group PCR suffered from Mediterranean and African spotted fever, respectively; in both cases, skin biopsy was performed on the eschar. Our duplex real-time PCR showed a good analytical sensitivity and specificity, allowing early diagnosis of rickettsiosis among three patients, and recognition of typhus in one of them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coxiella burnetii and members of the genus Rickettsia are obligate intracellular bacteria. Since cultivation of these organisms requires dedicated techniques, their diagnosis usually relies on serological or molecular biology methods. Immunofluorescence is considered the gold standard to detect antibody-reactivity towards these organisms. Here, we assessed the performance of a new automated epifluorescence immunoassay (InoDiag) to detect IgM and IgG against C. burnetii, Rickettsia typhi and Rickettsia conorii. Samples were tested with the InoDiag assay. A total of 213 sera were tested, of which 63 samples from Q fever, 20 from spotted fever rickettsiosis, 6 from murine typhus and 124 controls. InoDiag results were compared to micro-immunofluorescence. For acute Q fever, the sensitivity of phase 2 IgG was only of 30% with a cutoff of 1 arbitrary unit (AU). In patients with acute Q fever with positive IF IgM, sensitivity reached 83% with the same cutoff. Sensitivity for chronic Q fever was 100% whereas sensitivity for past Q fever was 65%. Sensitivity for spotted Mediterranean fever and murine typhus were 91% and 100%, respectively. Both assays exhibited a good specificity in control groups, ranging from 79% in sera from patients with unrelated diseases or EBV positivity to 100% in sera from healthy patients. In conclusion, the InoDiag assay exhibits an excellent performance for the diagnosis of chronic Q fever but a very low IgG sensitivity for acute Q fever likely due to low reactivity of phase 2 antigens present on the glass slide. This defect is partially compensated by the detection of IgM. Because it exhibits a good negative predictive value, the InoDiag assay is valuable to rule out a chronic Q fever. For the diagnosis of rickettsial diseases, the sensitivity of the InoDiag method is similar to conventional immunofluorescence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Since its first detection, characterization of R. felis has been a matter of debate, mostly due to the contamination of an initial R. felis culture by R. typhi. However, the first stable culture of R. felis allowed its precise phenotypic and genotypic characterization, and demonstrated that this species belonged to the spotted fever group rickettsiae. Later, its genome sequence revealed the presence of two forms of the same plasmid, physically confirmed by biological data. In a recent article, Gillespie et al. (PLoS One. 2007;2(3):e266.) used a bioinformatic approach to refute the presence of the second plasmid form, and proposed the creation of a specific phylogenetic group for R. felis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we, and five independent international laboratories confirmed unambiguously by PCR the presence of two plasmid forms in R. felis strain URRWXCal(2) (T), but observed that the plasmid content of this species, from none to 2 plasmid forms, may depend on the culture passage history of the studied strain. We also demonstrated that R. felis does not cultivate in Vero cells at 37 degrees C but generates plaques at 30 degrees C. Finally, using a phylogenetic study based on 667 concatenated core genes, we demonstrated the position of R. felis within the spotted fever group. SIGNIFICANCE: We demonstrated that R. felis, which unambiguously belongs to the spotted fever group rickettsiae, may contain up to two plasmid forms but this plasmid content is unstable.