16 resultados para Brandstatter, JIm
em Université de Lausanne, Switzerland
Resumo:
Review of the book : "Genes, Girls and Gamow", by James D. Watson, Oxford University Press, Oxford, UK
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
Artificial antigen-presenting cells (aAPC) are widely used for both clinical and basic research applications, as cell-based or bead-based scaffolds, combining immune synapse components of interest. Adequate and controlled preparation of aAPCs is crucial for subsequent immunoassays. We reveal that certain proteins such as activatory anti-CD3 antibody can be out-competed by other proteins (e.g. inhibitory receptor ligands such as PDL1:Fc) during the coating of aAPC beads, under the usually performed coating procedures. This may be misleading, as we found that decreased CD8 T cell activity was not due to inhibitory receptor triggering but rather because of unexpectedly low anti-CD3 antibody density on the beads upon co-incubation with inhibitory receptor ligands. We propose an optimized protocol, and emphasize the need to quality-control the coating of proteins on aAPC beads prior to their use in immunoassays.
Resumo:
The study of natural T cell responses against pathogens or tumors, as well as the assessment of new immunotherapy strategies aimed at boosting these responses, requires increasingly precise ex vivo analysis of blood samples. For practical reasons, studies are often performed using purified PBMC samples, usually cryopreserved. Here, we report on FACS analyses of peripheral blood T cells, performed by direct antibody staining of non-purified total blood. For comparison, fresh PBMC, purified by Ficoll, were analysed. Our results show that the latter method can induce a bias in subpopulation distribution, in particular of CD8+ T cells, and sometimes lead to inaccurate measurement of antigen specific CD8+ T cell responses. Direct analysis of total blood can be applied to longitudinal immuno-monitoring of T cell-based therapy. While the need to purify and cryopreserve PBMC for subsequent studies is obvious, the use of whole blood has the advantage of providing unbiased results and only small amounts of blood are used.
Resumo:
As more tumor antigens are discovered and as computer-guided T cell epitope prediction programs become more sophisticated, many potential T cell epitopes are synthesized and demonstrated to be antigenic in vitro. However, it is estimated that about 50% of such tumor antigen-specific T cells have not been demonstrated to recognize the naturally presented epitopes due to either technical difficulties, such as T cell cloning which is still challenging for many laboratories; or the predicted T cell epitopes are not generated or not generated in sufficient amounts by the antigen processing machinery. However, to potentially identify clinically relevant vaccine candidate epitopes, it is essential to demonstrate natural antigen presentation. Here we combine the advantages of MHC tetramer and intracellular cytokine staining to sensitively detect natural antigen presentation by tumor cells for epitopes of interest. The novel method does not require T cell cloning or long-term T cell culture. Because the antigen-specific T cells are positively identified, this method is much less influenced by IFNgamma producing cells with unknown specificities and should be widely applicable.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
Tumour immunologists strive to develop efficient tumour vaccination and adoptive transfer therapies that enlarge the pool of tumour-specific and -reactive effector T-cells in vivo. To assess the efficiency of the various strategies, ex vivo assays are needed for the longitudinal monitoring of the patient's specific immune responses providing both quantitative and qualitative data. In particular, since tumour cell cytolysis is the end goal of tumour immunotherapy, routine immune monitoring protocols need to include a read-out for the cytolytic efficiency of Ag-specific cells. We propose to combine current immune monitoring techniques in a highly sensitive and reproducible multi-parametric flow cytometry based cytotoxicity assay that has been optimised to require low numbers of Ag-specific T-cells. The possibility of re-analysing those T-cells that have undergone lytic activity is illustrated by the concomitant detection of CD107a upregulation on the surface of degranulated T-cells. To date, the LiveCount Assay provides the only possibility of assessing the ex vivo cytolytic activity of low-frequency Ag-specific cytotoxic T-lymphocytes from patient material.
Resumo:
Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Resumo:
BACKGROUND: Exposure to combination antiretroviral therapy (cART) can lead to important metabolic changes and increased risk of coronary heart disease (CHD). Computerized clinical decision support systems have been advocated to improve the management of patients at risk for CHD but it is unclear whether such systems reduce patients' risk for CHD. METHODS: We conducted a cluster trial within the Swiss HIV Cohort Study (SHCS) of HIV-infected patients, aged 18 years or older, not pregnant and receiving cART for >3 months. We randomized 165 physicians to either guidelines for CHD risk factor management alone or guidelines plus CHD risk profiles. Risk profiles included the Framingham risk score, CHD drug prescriptions and CHD events based on biannual assessments, and were continuously updated by the SHCS data centre and integrated into patient charts by study nurses. Outcome measures were total cholesterol, systolic and diastolic blood pressure and Framingham risk score. RESULTS: A total of 3,266 patients (80% of those eligible) had a final assessment of the primary outcome at least 12 months after the start of the trial. Mean (95% confidence interval) patient differences where physicians received CHD risk profiles and guidelines, rather than guidelines alone, were total cholesterol -0.02 mmol/l (-0.09-0.06), systolic blood pressure -0.4 mmHg (-1.6-0.8), diastolic blood pressure -0.4 mmHg (-1.5-0.7) and Framingham 10-year risk score -0.2% (-0.5-0.1). CONCLUSIONS: Systemic computerized routine provision of CHD risk profiles in addition to guidelines does not significantly improve risk factors for CHD in patients on cART.