189 resultados para Brand Image
em Université de Lausanne, Switzerland
Resumo:
In der heutigen Welt sind die Reputation und das Image eines Landes als wichtige Faktoren für den wirtschaftlichen und politischen Erfolg angesehen. Jedoch ist die Pflege der Marke eines Landes komplex und führt zu zwei Positionen, die sich potentiell widersprechen: Einerseits kann ein positives Erscheinungsbild eines Landes durch aktive Massnahmen gefördert werden. Andererseits ist es schwierig, das Bild eines Landes abzugrenzen und es ist mit Klischees behaftet. Dieser Beitrag analysiert die Auswirkungen von zwei grösseren Krisen auf das Image der Schweiz in den Vereinigten Staaten: die Krise um die nachrichtenlosen Vermögen aus der Zeit des 2. Weltkriegs im Jahr 2000 sowie die Krise um die UBS und das Bankgeheimnis im Jahr 2009. Die Studie zeigt, dass das Erscheinungsbild der Schweiz unberührt blieb, obwohl ein beachtlicher Teil der Bevölkerung und der Meinungsführer von beiden Krisen wusste. Dies stützt die Hypothese, dass das Image eines Landes eine hohe Beständigkeit aufweist. In today's world, country's reputation and image have become key issues, widely believed to be success factors both economically and politically. Nevertheless, managing a country's brand is complex and leads to two positions that are potentially contradictory: On the one hand, a country's image can be influenced either by promotional activities. On the other hand, a country's image is a construct that is very difficult to delimit and is highly stereotyped. This contribution study the impact of two major crises on the image of Switzerland in the United States: the unclaimed wartime deposits crisis in 2000 and the UBS and banking secrecy crisis in 2009. It shows that despite the fact that a substantial proportion of the public and of opinion leaders was aware of both crises, the image of Switzerland was unaffected, which tends to support the hypothesis of strong stability of a country's image.
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.
Resumo:
L'image qu'un pays a dans le monde est importante à plusieurs titres. Elle peut soutenir la commercialisation de biens et de services exportés, elle revêt un caractère tout particulier dans le cadre des promotions touristique et économique et elle peut aussi être de nature à contribuer aux relations qu'un pays entretient avec d'autres pays aux niveaux politique, économique ou culturel. L'image de la Suisse a fait l'objet d'études dans de nombreux pays, dont les Etats-Unis, l'Allemagne et la Chine, auprès d'échantillons représentatifs de la population ainsi qu'auprès de groupes de leaders d'opinion et cet ouvrage présente de manière synthétique les principaux résultats de ces études. Après une description de l'image globale de la Suisse auprès des personnes interrogées et une analyse des associations faites à l'évocation de la Suisse, une partie importante est consacrée aux dimensions qui caractérisent l'image du pays en différenciant notamment entre les dimensions liées à la Suisse en tant qu'espace socioculturel et les dimensions liées aux aspects économiques. Pour terminer, un dernier chapitre analyse l'impact de faits ayant marqué l'actualité helvétique, comme le grounding de Swissair, sur l'image de la Suisse dans les pays étudiés.