76 resultados para Brain areas

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE:: To examine the accuracy of brain multimodal monitoring-consisting of intracranial pressure, brain tissue PO2, and cerebral microdialysis-in detecting cerebral hypoperfusion in patients with severe traumatic brain injury. DESIGN:: Prospective single-center study. PATIENTS:: Patients with severe traumatic brain injury. SETTING:: Medico-surgical ICU, university hospital. INTERVENTION:: Intracranial pressure, brain tissue PO2, and cerebral microdialysis monitoring (right frontal lobe, apparently normal tissue) combined with cerebral blood flow measurements using perfusion CT. MEASUREMENTS AND MAIN RESULTS:: Cerebral blood flow was measured using perfusion CT in tissue area around intracranial monitoring (regional cerebral blood flow) and in bilateral supra-ventricular brain areas (global cerebral blood flow) and was matched to cerebral physiologic variables. The accuracy of intracranial monitoring to predict cerebral hypoperfusion (defined as an oligemic regional cerebral blood flow < 35 mL/100 g/min) was examined using area under the receiver-operating characteristic curves. Thirty perfusion CT scans (median, 27 hr [interquartile range, 20-45] after traumatic brain injury) were performed on 27 patients (age, 39 yr [24-54 yr]; Glasgow Coma Scale, 7 [6-8]; 24/27 [89%] with diffuse injury). Regional cerebral blood flow correlated significantly with global cerebral blood flow (Pearson r = 0.70, p < 0.01). Compared with normal regional cerebral blood flow (n = 16), low regional cerebral blood flow (n = 14) measurements had a higher proportion of samples with intracranial pressure more than 20 mm Hg (13% vs 30%), brain tissue PO2 less than 20 mm Hg (9% vs 20%), cerebral microdialysis glucose less than 1 mmol/L (22% vs 57%), and lactate/pyruvate ratio more than 40 (4% vs 14%; all p < 0.05). Compared with intracranial pressure monitoring alone (area under the receiver-operating characteristic curve, 0.74 [95% CI, 0.61-0.87]), monitoring intracranial pressure + brain tissue PO2 (area under the receiver-operating characteristic curve, 0.84 [0.74-0.93]) or intracranial pressure + brain tissue PO2+ cerebral microdialysis (area under the receiver-operating characteristic curve, 0.88 [0.79-0.96]) was significantly more accurate in predicting low regional cerebral blood flow (both p < 0.05). CONCLUSION:: Brain multimodal monitoring-including intracranial pressure, brain tissue PO2, and cerebral microdialysis-is more accurate than intracranial pressure monitoring alone in detecting cerebral hypoperfusion at the bedside in patients with severe traumatic brain injury and predominantly diffuse injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hemodynamic imaging results have associated both gender and body weight to variation in brain responses to food-related information. However, the spatio-temporal brain dynamics of gender-related and weight-wise modulations in food discrimination still remain to be elucidated. We analyzed visual evoked potentials (VEPs) while normal-weighted men (n = 12) and women (n = 12) categorized photographs of energy-dense foods and non-food kitchen utensils. VEP analyses showed that food categorization is influenced by gender as early as 170 ms after image onset. Moreover, the female VEP pattern to food categorization co-varied with participants' body weight. Estimations of the neural generator activity over the time interval of VEP modulations (i.e. by means of a distributed linear inverse solution [LAURA]) revealed alterations in prefrontal and temporo-parietal source activity as a function of image category and participants' gender. However, only neural source activity for female responses during food viewing was negatively correlated with body-mass index (BMI) over the respective time interval. Women showed decreased neural source activity particularly in ventral prefrontal brain regions when viewing food, but not non-food objects, while no such associations were apparent in male responses to food and non-food viewing. Our study thus indicates that gender influences are already apparent during initial stages of food-related object categorization, with small variations in body weight modulating electrophysiological responses especially in women and in brain areas implicated in food reward valuation and intake control. These findings extend recent reports on prefrontal reward and control circuit responsiveness to food cues and the potential role of this reactivity pattern in the susceptibility to weight gain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents. Methods CEFALO is a multicenter case-control study conducted in Denmark, Sweden, Norway, and Switzerland that includes all children and adolescents aged 7-19 years who were diagnosed with a brain tumor between 2004 and 2008. We conducted interviews, in person, with 352 case patients (participation rate: 83%) and 646 control subjects (participation rate: 71%) and their parents. Control subjects were randomly selected from population registries and matched by age, sex, and geographical region. We asked about mobile phone use and included mobile phone operator records when available. Odds ratios (ORs) for brain tumor risk and 95% confidence intervals (CIs) were calculated using conditional logistic regression models. Results Regular users of mobile phones were not statistically significantly more likely to have been diagnosed with brain tumors compared with nonusers (OR = 1.36; 95% CI = 0.92 to 2.02). Children who started to use mobile phones at least 5 years ago were not at increased risk compared with those who had never regularly used mobile phones (OR = 1.26, 95% CI = 0.70 to 2.28). In a subset of study participants for whom operator recorded data were available, brain tumor risk was related to the time elapsed since the mobile phone subscription was started but not to amount of use. No increased risk of brain tumors was observed for brain areas receiving the highest amount of exposure. Conclusion The absence of an exposure-response relationship either in terms of the amount of mobile phone use or by localization of the brain tumor argues against a causal association.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquaporin 9 facilitates the diffusion of water but also glycerol and monocarboxylates, known as brain energy substrates. AQP9 was recently observed in catecholaminergic neurons that are implicated in energy homeostasis and also possibly in neuroendocrine effects of diabetes. Recently it has been observed that the level of AQP9 expression in hepatocytes is sensitive to the blood concentration of insulin. Furthermore, insulin injection in the brain is known to be related to the energy homeostasis. Based on these observations, we investigated if the concentration of insulin affects the level of brain AQP9 expression and if so, in which cell types. This study has been carried out, in a model of the diabetic rat generated by streptozotocin injection and on brainstem slices. In diabetic rats showing a decrease in systemic insulin concentration, AQP9 is only increased in brain areas containing catecholaminergic neurons. In contrast, no significant change is detected in the cerebral cortex and the cerebellum. Using immunocytochemistry, we are able to show that the increase in AQP9 expression is specifically present in catecholaminergic neurons. In brainstem slice cultures, 2 microM insulin induces a significant decrease in AQP9 protein levels 6 h after application, suggesting that brain AQP9 is also regulated by the insulin. These results show that the level of expression of brain AQP9 is affected by variations of the concentration of insulin in a diabetic model and in vitro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : This thesis investigated the spatio-temporal brain mechanisms of three processes involved in recognizing environmental sounds produced by living (animal vocalisations) and man-made (manufactured) objects: their discrimination, their plasticity, and the involvement of action representations. Results showed rapid brain discrimination between these categories beginning at ~70ms. Then, beginning at ~150ms, effects of plasticity are observed, without any influence of the categories of sounds. Both of these processes of discrimination and repetition priming involved brain structures located in temporal and frontal lobes. Activation of brain areas BA21 and BA22 suggest an access to semantic representations and/or linked to object manipulation. To investigate the involvement of action representations in sound recognition, analyses were restricted to sounds produced by man-made objects. Results suggest an access to representations linked to action functionally related to sound rather than to representations linked to action that produced sound. These effects occurred at ~300ms post-stimulus onset and involved differential activity brain regions attributed to the mirror neuron system. These data are discussed in regard to motor preparation of actions functionally linked to sounds. Collectively these data showed a sequential progression of cerebral activity underlying the recognizing of environmental sounds. The processes occurred firstly in a shared network of brain areas before propagating elsewhere and/or leading to differential activity in these structures. Cerebral responses observed in this work allowed establishing a dynamic model of discrimination of sounds produced by living and man-made objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Our aim was to study the brain regions involved in a divided attention tracking task related to driving in occasional cannabis smokers. In addition we assessed the relationship between THC levels in whole blood and changes in brain activity, behavioural and psychomotor performances. Methods: Twenty-one smokers participated to two independent cross-over fMRI experiments before and after smoking cannabis and a placebo. The paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Blood samples were taken at regular intervals to determine the time-profiles of the major cannabinoids. Their levels during the fMRI experiments were interpolated from concentrations measured by GCMS/ MS just before and after brain imaging. Results: Behavioural data, such as the discard between target and cursor, the time of correct tracking and the reaction time during traffic lights appearance showed a statistical significant impairment of subject s skills due to THC intoxication. Highest THC blood concentrations were measured soon after smoking and ranged between 28.8 and 167.9 ng/ml. These concentrations reached values of a few ng/ml during the fMRI. fMRI results pointed out that under the effect of THC, high order visual areas (V3d) and Intraparietal sulcus (IPS) showed an higher activation compared to the control condition. The opposite comparison showed a decrease of activation during the THC condition in the anterior cingulate gyrus and orbitofrontal areas. In these locations, the BOLD showed a negative correlation with the THC level. Conclusion: Acute cannabis smoking significantly impairs performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network. Neural activity in the anterior cingulate might be responsible of the changes in the cognitive controls required in our divided attention task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circadian and sleep-homeostatic processes both contribute to sleep timing and sleep structure. Elimination of circadian rhythms through lesions of the suprachiasmatic nuclei (SCN), the master circadian pacemaker, leads to fragmentation of wakefulness and sleep but does not eliminate the homeostatic response to sleep loss as indexed by the increase in EEG delta power. In humans, EEG delta power declines during sleep episodes nearly independently of circadian phase. Such observations have contributed to the prevailing notion that circadian and homeostatic processes are separate but recent data imply that this segregation may not extend to the molecular level. Here we summarize the criteria and evidence for a role for clock genes in sleep homeostasis. Studies in mice with targeted disruption for core circadian clock genes have revealed alterations in circadian rhythmicity as well as changes in sleep duration, sleep structure and EEG delta power. Clock-gene expression in brain areas outside the SCN, in particular the cerebral cortex, depends to a large extent on prior sleep-wake history. Evidence for effects of clock genes on sleep homeostasis has also been obtained in Drosophila and humans, pointing to a phylogenetically preserved pathway. These findings suggest that, while within the SCN clock genes are utilized to set internal time-of-day, in the forebrain the same feedback circuitry may be utilized to track time spent awake and asleep. The mechanisms by which clock-gene expression is coupled to the sleep-wake distribution could be through cellular energy charge whereby clock genes act as energy sensors. The data underscore the interrelationships between energy metabolism, circadian rhythmicity, and sleep regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: In sporadic Tauopathies, neurofibrillary degeneration (NFD) is characterised by the intraneuronal aggregation of wild-type Tau proteins. In the human brain, the hierarchical pathways of this neurodegeneration have been well established in Alzheimer's disease (AD) and other sporadic tauopathies such as argyrophilic grain disorder and progressive supranuclear palsy but the molecular and cellular mechanisms supporting this progression are yet not known. These pathways appear to be associated with the intercellular transmission of pathology, as recently suggested in Tau transgenic mice. However, these conclusions remain ill-defined due to a lack of toxicity data and difficulties associated with the use of mutant Tau. RESULTS: Using a lentiviral-mediated rat model of hippocampal NFD, we demonstrated that wild-type human Tau protein is axonally transferred from ventral hippocampus neurons to connected secondary neurons even at distant brain areas such as olfactory and limbic systems indicating a trans-synaptic protein transfer. Using different immunological tools to follow phospho-Tau species, it was clear that Tau pathology generated using mutated Tau remains near the IS whereas it spreads much further using the wild-type one. CONCLUSION: Taken together, these results support a novel mechanism for Tau protein transfer compared to previous reports based on transgenic models with mutant cDNA. It also demonstrates that mutant Tau proteins are not suitable for the development of experimental models helpful to validate therapeutic intervention interfering with Tau spreading.