146 resultados para Bone metabolic disease
em Université de Lausanne, Switzerland
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
There has been much concern regarding the role of dietary fructose in the development of metabolic diseases. This concern arises from the continuous increase in fructose (and total added caloric sweeteners consumption) in recent decades, and from the increased use of high-fructose corn syrup (HFCS) as a sweetener. A large body of evidence shows that a high-fructose diet leads to the development of obesity, diabetes, and dyslipidemia in rodents. In humans, fructose has long been known to increase plasma triglyceride concentrations. In addition, when ingested in large amounts as part of a hypercaloric diet, it can cause hepatic insulin resistance, increased total and visceral fat mass, and accumulation of ectopic fat in the liver and skeletal muscle. These early effects may be instrumental in causing, in the long run, the development of the metabolic syndrome. There is however only limited evidence that fructose per se, when consumed in moderate amounts, has deleterious effects. Several effects of a high-fructose diet in humans can be observed with high-fat or high-glucose diets as well, suggesting that an excess caloric intake may be the main factor involved in the development of the metabolic syndrome. The major source of fructose in our diet is with sweetened beverages (and with other products in which caloric sweeteners have been added). The progressive replacement of sucrose by HFCS is however unlikely to be directly involved in the epidemy of metabolic disease, because HFCS appears to have basically the same metabolic effects as sucrose. Consumption of sweetened beverages is however clearly associated with excess calorie intake, and an increased risk of diabetes and cardiovascular diseases through an increase in body weight. This has led to the recommendation to limit the daily intake of sugar calories.
Resumo:
OBJECTIVE: Prospective data on the association between resistin levels and cardiovascular disease (CVD) events are sparse with conflicting results. METHODS: We studied 3044 aged 70-79 years from the Health, Aging, and Body Composition Study. CVD events were defined as coronary heart disease (CHD) or stroke events. «Hard » CHD events were defined as CHD death or myocardial infarction. We estimated hazard ratio (HR) and 95% confidence intervals (CI) according to the quartiles of serum resistin concentrations and adjusted for clinical variables, and then further adjusted for metabolic disease (body mass index, fasting plasma glucose, abdominal visceral and subcutaneous adipose tissue, leptin, adiponectin, insulin) and inflammation (C-reactive protein, interleukin-6, tumor necrosis factors-α). RESULTS: During a median follow-up of 10.1 years, 559 patients had « hard » CHD events, 884 CHD events and 1106 CVD Events. Unadjusted incidence rate for CVD events was 36.6 (95% CI 32.1-41.1) per 1000 persons-year in the lowest quartile and 54.0 per 1000 persons-year in the highest quartile (95% CI 48.2-59.8, P for trend < 0.001). In the multivariate models adjusted for clinical variables, HRs for the highest vs. lowest quartile of resistin was 1.52 (95% CI 1.20-1.93, P < 0.001) for « Hard » CHD events, 1.41 (95% CI 1.16-1.70, P = 0.001) for CHD events and 1.35 (95% CI 1.14-1.59, P = 0.002) for CVD events. Further adjustment for metabolic disease slightly reduced the associations while adjustment for inflammation markedly reduced the associations. CONCLUSIONS: In older adults, higher resistin levels are associated with CVD events independently of clinical risk factors and metabolic disease markers, but markedly attenuated by inflammation.
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial.
Resumo:
OBJECTIVES: A lipidomic approach was employed in a clinically well-defined cohort of healthy obese women to explore blood lipidome phenotype ascribed to body fat deposition, with emphasis on epicardial adipose tissue (EAT). METHODS: The present investigation delivered a lipidomics signature of epicardial adiposity under healthy clinical conditions using a cohort of 40 obese females (age: 25-45 years, BMI: 28-40 kg/m(2) ) not showing any metabolic disease traits. Lipidomics analysis of blood plasma was employed in combination with in vivo quantitation of mediastinal fat depots by computerized tomography. RESULTS: All cardiac fat depots correlated to indicators of hepatic dysfunctions (ALAT and ASAT), which describe physiological connections between hepatic and cardiac steatosis. Plasma lipidomics encompassed overall levels of lipid classes, fatty acid profiles, and individual lipid species. EAT and visceral fat associated with diacylglycerols (DAG), triglycerides, and distinct phospholipid and sphingolipid species. A pattern of DAG and phosphoglycerols was specific to EAT. CONCLUSIONS: Human blood plasma lipidomics appears to be a promising clinical and potentially diagnostic readout for patient stratification and monitoring. Association of blood lipidomics signature to regio-specific mediastinal and visceral adiposity under healthy clinical conditions may help provide more biological insights into obese patient stratification for cardiovascular disease risks.
Resumo:
Obesity is recognised as a global epidemic and the most prevalent metabolic disease world-wide. Specialised obesity services, however, are not widely available in Europe, and obesity care can vary enormously across European regions. The European Association for the Study of Obesity (EASO, www.easo.org) has developed these criteria to form a pan-European network of accredited EASO-Collaborating Centres for Obesity Management (EASO-COMs) in accordance with accepted European and academic guidelines. This network will include university, public and private clinics and will ensure that the obese and overweight patient is managed by a holistic team of specialists and receives comprehensive state-ofthe-art clinical care. Furthermore, the participating centres, under the umbrella of EASO, will work closely for quality control, data collection, and analysis as well as for education and research for the advancement of obesity care and obesity science.
Resumo:
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Resumo:
Deficiency of propionyl CoA carboxylase (PCC), a dodecamer of alpha and beta subunits, causes inherited propionic acidemia. We have studied, at the molecular level, PCC in 54 patients from 48 families comprised of 96 independent alleles. These patients of various ethnic backgrounds came from research centers and hospitals in Germany, Austria and Switzerland. The thorough clinical characterization of these patients was described in the accompanying paper (Grünert et al. 2012). In all 54 patients, many of whom originated from consanguineous families, the entire PCCB gene was examined by genomic DNA sequencing and in 39 individuals the PCCA gene was also studied. In three patients we found mutations in both PCC genes. In addition, in many patients RT-PCR analysis of lymphoblast RNA, lymphoblast enzyme assays, and expression of new mutations in E.coli were carried out. Eight new and eight previously detected mutations were identified in the PCCA gene while 15 new and 13 previously detected mutations were found in the PCCB gene. One missense mutation, p.V288I in the PCCB gene, when expressed in E.coli, yielded 134% of control activity and was consequently classified as a polymorphism in the coding region. Numerous new intronic polymorphisms in both PCC genes were identified. This study adds a considerable amount of new molecular data to the studies of this disease.
Resumo:
While it was thought that most of cerebral creatine is of peripheral origin, AGAT and GAMT are well expressed in CNS where brain cells synthesize creatine. While the creatine transporter SLC6A8 is expressed by microcapillary endothelial cells (MCEC) at blood-brain barrier (BBB), it is absent from their surrounding astrocytes. This raised the concept that BBB has a limited permeability for peripheral creatine, and that the brain supplies a part of its creatine by endogenous synthesis. This review brings together the latest data on creatine and guanidinoacetate transport through BBB and blood-CSF barrier (BCSFB) with the clinical evidence of AGAT-, GAMT- and SLC6A8-deficient patients, in order to delineate a clearer view on the roles of BBB and BCSFB in the transport of creatine and guanidinoacetate between periphery and CNS, and on brain synthesis and transport of creatine. It shows that in physiological conditions, creatine is taken up by CNS from periphery through SLC6A8 at BBB, but in limited amounts, and that CNS also needs its own creatine synthesis. No uptake of guanidinoacetate from periphery occurs at BBB except under GAMT deficiency, but a net exit of guanidinoacetate seems to occur from CSF to blood at BCSFB, predominantly through the taurine transporter TauT.
Resumo:
Results of plasma or urinary amino acids are used for suspicion, confirmation or exclusion of diagnosis, monitoring of treatment, prevention and prognosis in inborn errors of amino acid metabolism. The concentrations in plasma or whole blood do not necessarily reflect the relevant metabolite concentrations in organs such as the brain or in cell compartments; this is especially the case in disorders that are not solely expressed in liver and/or in those which also affect nonessential amino acids. Basic biochemical knowledge has added much to the understanding of zonation and compartmentation of expressed proteins and metabolites in organs, cells and cell organelles. In this paper, selected old and new biochemical findings in PKU, urea cycle disorders and nonketotic hyperglycinaemia are reviewed; the aim is to show that integrating the knowledge gained in the last decades on enzymes and transporters related to amino acid metabolism allows a more extensive interpretation of biochemical results obtained for diagnosis and follow-up of patients and may help to pose new questions and to avoid pitfalls. The analysis and interpretation of amino acid measurements in physiological fluids should not be restricted to a few amino acids but should encompass the whole quantitative profile and include other pathophysiological markers. This is important if the patient appears not to respond as expected to treatment and is needed when investigating new therapies. We suggest that amino acid imbalance in the relevant compartments caused by over-zealous or protocol-driven treatment that is not adjusted to the individual patient's needs may prolong catabolism and must be corrected
Resumo:
Congenital disorders of glycosylation (CDG) are a family of multisystem inherited disorders caused by defects in the biosynthesis of N- or O-glycans. Among the many different subtypes of CDG, the defect of a mannosyltransferase encoded by the human ALG3 gene (chromosome 3q27) is known to cause CDG Id. Six patients with CDG Id have been described in the literature so far. We further delineate the clinical, biochemical, neuroradiological and molecular features of CDG Id by reporting an additional patient bearing a novel missense mutation in the ALG3 gene. All patients with CDG Id display a slowly progressive encephalopathy with microcephaly, severe psychomotor retardation and epileptic seizures. They also share some typical dysmorphic features but they do not present the multisystem involvement observed in other CDG syndromes or any biological marker abnormalities. Unusually marked osteopenia is a feature in some patients and may remain undiagnosed until revealed by pathological fractures. Serum transferrin screening for CDG should be extended to all patients with encephalopathy of unknown origin, even in the absence of multisystem involvement.
Resumo:
OBJECTIVES: Subependymal pseudocysts (SEPC) are cerebral periventricular cysts located on the floor of the lateral ventricle and result from regression of the germinal matrix. They are increasingly diagnosed on neonatal cranial ultrasound. While associated pathologies are reported, information about long-term prognosis is missing, and we aimed to investigate long-term follow-up of these patients. STUDY DESIGN: Newborns diagnosed with SEPC were enrolled for follow-up. Neurodevelopment outcome was assessed at 6, 18 and 46 months of age. RESULTS: 74 newborns were recruited: we found a high rate of antenatal events (63%), premature infants (66% <37 weeks, 31% <32 weeks) and twins (30%). MRI was performed in 31 patients, and cystic periventricular leukomalacia (c-PVL) was primarily falsely diagnosed in 9 of them. Underlying disease was diagnosed in 17 patients, 8 with congenital cytomegalovirus (CMV) infection, 5 with genetic and 4 with metabolic disease. Neurological examination (NE) at birth was normal for patients with SEPCs and no underlying disease, except one. Mean Developmental Quotient and IQ of these patients was 98.2 (±9.6SD; range 77-121), 94.6 (±14.2SD; 71-120) and 99.6 (±12.3SD; 76-120) at 6, 18 and 46 months of age, respectively, with no differences between the subtypes of SEPC. A subset analysis showed no outcome differences between preterm infants with or without SEPC, or between preterm of <32 GA and ≥32 GA. CONCLUSIONS: Neurodevelopment of newborns with SEPC was normal when no underlying disease was present. This study suggests that if NE is normal at birth and congenital CMV infection can be excluded, then no further investigations are needed. Moreover, it is crucial to differentiate SEPC from c-PVL which carries a poor prognosis.