5 resultados para Bone diseases, metabolic

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les importants progrès dans la qualité et la résolution des images obtenues par «absorptiométrie biphotonique à rayons X» ou DXA ont amélioré certaines modalités existantes et favorisé le développement de nouvelles fonctions permettant d'affiner de manière significative la prise en charge de nos patients dans diverses pathologies. On peut par exemple améliorer la prédiction du risque fracturaire par l'analyse indirecte de la micro et de la macroarchitecture osseuse, rechercher les marqueurs de pathologies associées (recherche de fractures vertébrales ou de fractures fémorales atypiques), ou évaluer le statut métabolique par la mesure de la composition corporelle. Avec les appareils DXA les plus performants, on pourra bientôt déterminer l'âge osseux, estimer le risque cardiovasculaire (par la mesure de la calcification de l'aorte abdominale), ou prédire la progression de l'arthrose articulaire et son évolution après la prise en charge chirurgicale dans la routine clinique. The significant progress on the quality and resolution of the images obtained by "Dual X-ray Absorptiometry" or DXA has permitted on one hand to improve some existing features and on the other to develop new ones, significantly refining the care of our patients in various pathologies. For example, by improving the prediction of fracture risk by indirect analysis of micro- and macro-architecture of the bone, by looking for markers of associated bone diseases (research vertebral fractures or atypical femoral fractures), or by assessing the metabolic status by the measurement of body composition. With the best performing DXA devices we will soon be able, in clinical routine, to determine bone age, to estimate cardiovascular risk (by measuring the calcification of the abdominal aorta) or to predict the progression of joint osteoarthritis and its evolution after surgical management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors control many cellular and metabolic processes. They are transcription factors belonging to the family of ligand-inducible nuclear receptors. Three isotypes called PPARalpha, PPARbeta/delta and PPARgamma have been identified in lower vertebrates and mammals. They display differential tissue distribution and each of the three isotypes fulfills specific functions. PPARalpha and PPARgamma control energy homoeostasis and inflammatory responses. Their activity can be modulated by drugs such as the hypolipidaemic fibrates and the insulin sensitising thiazolidinediones (pioglitazone and rosiglitazone). Thus, these receptors are involved in the control of chronic diseases such as diabetes, obesity, and atherosclerosis. Little is known about the main function of PPARbeta, but it has been implicated in embryo implantation, tumorigenesis in the colon, reverse cholesterol transport, and recently in skin wound healing. Here, we present recent developments in the PPAR field with particular emphasis on both the function of PPARs in lipid metabolism and energy homoeostasis (PPARalpha and PPARgamma), and their role in epidermal maturation and skin wound repair (PPARalpha and PPARbeta).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular calcium participates in several key physiological functions, such as control of blood coagulation, bone calcification or muscle contraction. Calcium homeostasis in humans is regulated in part by genetic factors, as illustrated by rare monogenic diseases characterized by hypo or hypercalcaemia. Both serum calcium and urinary calcium excretion are heritable continuous traits in humans. Serum calcium levels are tightly regulated by two main hormonal systems, i.e. parathyroid hormone and vitamin D, which are themselves also influenced by genetic factors. Recent technological advances in molecular biology allow for the screening of the human genome at an unprecedented level of detail and using hypothesis-free approaches, such as genome-wide association studies (GWAS). GWAS identified novel loci for calcium-related phenotypes (i.e. serum calcium and 25-OH vitamin D) that shed new light on the biology of calcium in humans. The substantial overlap (i.e. CYP24A1, CASR, GATA3; CYP2R1) between genes involved in rare monogenic diseases and genes located within loci identified in GWAS suggests a genetic and phenotypic continuum between monogenic diseases of calcium homeostasis and slight disturbances of calcium homeostasis in the general population. Future studies using whole-exome and whole-genome sequencing will further advance our understanding of the genetic architecture of calcium homeostasis in humans. These findings will likely provide new insight into the complex mechanisms involved in calcium homeostasis and hopefully lead to novel preventive and therapeutic approaches. Keyword: calcium, monogenic, genome-wide association studies, genetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To investigate the relationship of alcohol consumption with the metabolic syndrome and diabetes in a population-based study with high mean alcohol consumption. Few data exist on these conditions in high-risk drinkers. METHODS: In 6172 adults aged 35-75 years, alcohol consumption was categorized as 0, 1-6, 7-13, 14-20, 21-27, 28-34 and ≥ 35 drinks/week or as non-drinkers (0), low-risk (1-13), medium-to-high-risk (14-34) and very-high-risk (≥ 35) drinkers. Alcohol consumption was objectively confirmed by biochemical tests. In multivariate analysis, we assessed the relationship of alcohol consumption with adjusted prevalence of the metabolic syndrome, diabetes and insulin resistance, determined with the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS: Seventy-three per cent of participants consumed alcohol, 16% were medium-to-high-risk drinkers and 2% very-high-risk drinkers. In multivariate analysis, the prevalence of the metabolic syndrome, diabetes and mean HOMA-IR decreased with low-risk drinking and increased with high-risk drinking. Adjusted prevalence of the metabolic syndrome was 24% in non-drinkers, 19% in low-risk (P<0.001 vs. non-drinkers), 20% in medium-to-high-risk and 29% in very-high-risk drinkers (P=0.005 vs. low-risk). Adjusted prevalence of diabetes was 6.0% in non-drinkers, 3.6% in low-risk (P<0.001 vs. non-drinkers), 3.8% in medium-to-high-risk and 6.7% in very-high-risk drinkers (P=0.046 vs. low-risk). Adjusted HOMA-IR was 2.47 in non-drinkers, 2.14 in low-risk (P<0.001 vs. non-drinkers), 2.27 in medium-to-high-risk and 2.53 in very-high-risk drinkers (P=0.04 vs. low-risk). These relationships did not differ according to beverage types. CONCLUSIONS: Alcohol has a U-shaped relationship with the metabolic syndrome, diabetes and HOMA-IR, without differences between beverage types.