2 resultados para Boat waves

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To present the long-term follow-up of 10 adolescents and young adults with documented cognitive and behavioral regression as children due to nonlesional focal, mainly frontal, epilepsy with continuous spike-waves during slow wave sleep (CSWS). METHODS: Past medical and electroencephalography (EEG) data were reviewed and neuropsychological tests exploring main cognitive functions were administered. KEY FINDINGS: After a mean duration of follow-up of 15.6 years (range, 8-23 years), none of the 10 patients had recovered fully, but four regained borderline to normal intelligence and were almost independent. Patients with prolonged global intellectual regression had the worst outcome, whereas those with more specific and short-lived deficits recovered best. The marked behavioral disorders resolved in all but one patient. Executive functions were neither severely nor homogenously affected. Three patients with a frontal syndrome during the active phase (AP) disclosed only mild residual executive and social cognition deficits. The main cognitive gains occurred shortly after the AP, but qualitative improvements continued to occur. Long-term outcome correlated best with duration of CSWS. SIGNIFICANCE: Our findings emphasize that cognitive recovery after cessation of CSWS depends on the severity and duration of the initial regression. None of our patients had major executive and social cognition deficits with preserved intelligence, as reported in adults with early destructive lesions of the frontal lobes. Early recognition of epilepsy with CSWS and rapid introduction of effective therapy are crucial for a best possible outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.