136 resultados para Blood protein polymorphism

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Inflammatory bowel diseases (IBDs), Crohn's disease, and ulcerative colitis (UC), are multifactorial disorders, characterized by chronic inflammation of the intestine. A number of genetic components have been proposed to contribute to IBD pathogenesis. In this case-control study, we investigated the association between two common vitamin D-binding protein (DBP) genetic variants and IBD susceptibility. These two single nucleotide polymorphisms (SNPs) in exon 11 of the DBP gene, at codons 416 (GAT>GAG; Asp>Glu) and 420 (ACG>AAG; Thr>Lys), have been previously suggested to play roles in the etiology of other autoimmune diseases. METHODS: Using TaqMan SNP technology, we have genotyped 884 individuals (636 IBD cases and 248 non-IBD controls) for the two DBP variants. RESULTS: On statistical analysis, we observed that the DBP 420 variant Lys is less frequent in IBD cases than in non-IBD controls (allele frequencies, P=0.034; homozygous carrier genotype frequencies, P=0.006). This inverse association between the DBP 420 Lys and the disease remained significant, when non-IBD participants were compared with UC (homozygous carrier genotype frequencies, P=0.022) or Crohn's disease (homozygous carrier genotype frequencies, P=0.016) patients separately. Although the DBP position 416 alone was not found to be significantly associated with IBD, the haplotype DBP_2, consisting of 416 Asp and 420 Lys, was more frequent in the non-IBD population, particularly notably when compared with the UC group (Odds ratio, 4.390). CONCLUSION: Our study adds DBP to the list of potential genes that contribute to the complex genetic etiology of IBD, and further emphasizes the association between vitamin D homeostasis and intestinal inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-1 receptor antagonist (IL-1ra) gene polymorphisms in 83 human immunodeficiency virus (HIV)-seropositive women were evaluated. Fourteen of the subjects (16.9%) were homozygous for IL-1ra allele 2 (IL-1RN*2). These women had a lower median level of HIV RNA than did women homozygous for allele 1 (IL-1RN*1) (P = 0.01) or heterozygous for both alleles (P = 0.04). Among 46 subjects not receiving antiretroviral treatment, HIV levels were also reduced in IL-1RN*2 homozygous individuals (P < 0.05). There was no relation between IL-1ra alleles and CD4 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background/Aims. Recently, peripheral blood mononuclear cell transcriptome analysis has identified genes that are upregulated in relapsing minimal-change nephrotic syndrome (MCNS). In order to investigate protein expression in peripheral blood mononuclear cells (PBMC) from relapsing MCNS patients, we performed proteomic comparisons of PBMC from patients with MCNS in relapse and controls. METHODS: PBMC from a total of 20 patients were analysed. PBMC were taken from five patients with relapsing MCNS, four in remission, five patients with other glomerular diseases and six controls. Two dimensional electrophoresis was performed and proteome patterns were compared. RESULTS: Automatic heuristic clustering analysis allowed us to pool correctly the gels from the MCNS patients in the relapse and in the control groups. Using hierarchical population matching, nine spots were found to be increased in PBMC from MCNS patients in relapse. Four spots were identified by mass spectrometry. Three of the four proteins identified (L-plastin, alpha-tropomyosin and annexin III) were cytoskeletal-associated proteins. Using western blot and immunochemistry, L-plastin and alpha-tropomyosin 3 concentrations were found to be enhanced in PBMC from MCNS patients in relapse. Conclusions. These data indicate that a specific proteomic profile characterizes PBMC from MCNS patients in relapse. Proteins involved in PBMC cytoskeletal rearrangement are increased in relapsing MCNS. We hypothesize that T-cell cytoskeletal rearrangement may play a role in the pathogenesis of MCNS by altering the expression of cell surface receptors and by modifying the interaction of these cells with glomerular cells.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diagnosis in allergology is facing novel challenges because of the availability not only of purified or recombinant allergens, but also of multitests such as allergen micro-arrays. These new diagnostic opportunities contribute to a better understanding of crossreactivities between respiratory and food allergens. In comparison to current diagnosis based on whole allergen extracts, this novel generation of specific IgE tests is expected to provide better information on the risk of reaction to allergens as well as on its severity. However these new technologies are expensive, and will have to be carefully analyzed in terms of medical usefulness and public health costs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

[(11)C]PBR28 binds the 18-kDa Translocator Protein (TSPO) and is used in positron emission tomography (PET) to detect microglial activation. However, quantitative interpretations of signal are confounded by large interindividual variability in binding affinity, which displays a trimodal distribution compatible with a codominant genetic trait. Here, we tested directly for an underlying genetic mechanism to explain this. Binding affinity of PBR28 was measured in platelets isolated from 41 human subjects and tested for association with polymorphisms in TSPO and genes encoding other proteins in the TSPO complex. Complete agreement was observed between the TSPO Ala147Thr genotype and PBR28 binding affinity phenotype (P value=3.1 x 10(-13)). The TSPO Ala147Thr polymorphism predicts PBR28 binding affinity in human platelets. As all second-generation TSPO PET radioligands tested hitherto display a trimodal distribution in binding affinity analogous to PBR28, testing for this polymorphism may allow quantitative interpretation of TSPO PET studies with these radioligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The correlation between noninvasive markers with endoscopic activity according to the modified Baron Index in patients with ulcerative colitis (UC) is unknown. We aimed to evaluate the correlation between endoscopic activity and fecal calprotectin (FC), C-reactive protein (CRP), hemoglobin, platelets, blood leukocytes, and the Lichtiger Index (clinical score). METHODS: UC patients undergoing complete colonoscopy were prospectively enrolled and scored clinically and endoscopically. Samples from feces and blood were analyzed in UC patients and controls. RESULTS: We enrolled 228 UC patients and 52 healthy controls. Endoscopic disease activity correlated best with FC (Spearman's rank correlation coefficient r = 0.821), followed by the Lichtiger Index (r = 0.682), CRP (r = 0.556), platelets (r = 0.488), blood leukocytes (r = 0.401), and hemoglobin (r = -0.388). FC was the only marker that could discriminate between different grades of endoscopic activity (grade 0, 16 [10-30] μg/g; grade 1, 35 [25-48] μg/g; grade 2, 102 [44-159] μg/g; grade 3, 235 [176-319] μg/g; grade 4, 611 [406-868] μg/g; P < 0.001 for discriminating the different grades). FC with a cutoff of 57 μg/g had a sensitivity of 91% and a specificity of 90% to detect endoscopically active disease (modified Baron Index ≥ 2). CONCLUSIONS: FC correlated better with endoscopic disease activity than clinical activity, CRP, platelets, hemoglobin, and blood leukocytes. The strong correlation with endoscopic disease activity suggests that FC represents a useful biomarker for noninvasive monitoring of disease activity in UC patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approximately 3% of the world population is chronically infected with the hepatitis C virus (HCV), with potential development of cirrhosis and hepatocellular carcinoma. Despite the availability of new antiviral agents, treatment remains suboptimal. Genome-wide association studies (GWAS) identified rs12979860, a polymorphism nearby IL28B, as an important predictor of HCV clearance. We report the identification of a novel TT/-G polymorphism in the CpG region upstream of IL28B, which is a better predictor of HCV clearance than rs12979860. By using peripheral blood mononuclear cells (PBMCs) from individuals carrying different allelic combinations of the TT/-G and rs12979860 polymorphisms, we show that induction of IL28B and IFN-γ-inducible protein 10 (IP-10) mRNA relies on TT/-G, but not rs12979860, making TT/-G the only functional variant identified so far. This novel step in understanding the genetic regulation of IL28B may have important implications for clinical practice, as the use of TT/G genotyping instead of rs12979860 would improve patient management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CONTEXT: Plasma levels of C-reactive protein (CRP) are independently associated with risk of coronary heart disease, but whether CRP is causally associated with coronary heart disease or merely a marker of underlying atherosclerosis is uncertain. OBJECTIVE: To investigate association of genetic loci with CRP levels and risk of coronary heart disease. DESIGN, SETTING, AND PARTICIPANTS: We first carried out a genome-wide association (n = 17,967) and replication study (n = 13,615) to identify genetic loci associated with plasma CRP concentrations. Data collection took place between 1989 and 2008 and genotyping between 2003 and 2008. We carried out a mendelian randomization study of the most closely associated single-nucleotide polymorphism (SNP) in the CRP locus and published data on other CRP variants involving a total of 28,112 cases and 100,823 controls, to investigate the association of CRP variants with coronary heart disease. We compared our finding with that predicted from meta-analysis of observational studies of CRP levels and risk of coronary heart disease. For the other loci associated with CRP levels, we selected the most closely associated SNP for testing against coronary heart disease among 14,365 cases and 32,069 controls. MAIN OUTCOME MEASURE: Risk of coronary heart disease. RESULTS: Polymorphisms in 5 genetic loci were strongly associated with CRP levels (% difference per minor allele): SNP rs6700896 in LEPR (-14.8%; 95% confidence interval [CI], -17.6% to -12.0%; P = 6.2 x 10(-22)), rs4537545 in IL6R (-11.5%; 95% CI, -14.4% to -8.5%; P = 1.3 x 10(-12)), rs7553007 in the CRP locus (-20.7%; 95% CI, -23.4% to -17.9%; P = 1.3 x 10(-38)), rs1183910 in HNF1A (-13.8%; 95% CI, -16.6% to -10.9%; P = 1.9 x 10(-18)), and rs4420638 in APOE-CI-CII (-21.8%; 95% CI, -25.3% to -18.1%; P = 8.1 x 10(-26)). Association of SNP rs7553007 in the CRP locus with coronary heart disease gave an odds ratio (OR) of 0.98 (95% CI, 0.94 to 1.01) per 20% lower CRP level. Our mendelian randomization study of variants in the CRP locus showed no association with coronary heart disease: OR, 1.00; 95% CI, 0.97 to 1.02; per 20% lower CRP level, compared with OR, 0.94; 95% CI, 0.94 to 0.95; predicted from meta-analysis of the observational studies of CRP levels and coronary heart disease (z score, -3.45; P < .001). SNPs rs6700896 in LEPR (OR, 1.06; 95% CI, 1.02 to 1.09; per minor allele), rs4537545 in IL6R (OR, 0.94; 95% CI, 0.91 to 0.97), and rs4420638 in the APOE-CI-CII cluster (OR, 1.16; 95% CI, 1.12 to 1.21) were all associated with risk of coronary heart disease. CONCLUSION: The lack of concordance between the effect on coronary heart disease risk of CRP genotypes and CRP levels argues against a causal association of CRP with coronary heart disease.