4 resultados para Blood oxygen transport

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the neural basis for spontaneous chemo-stimulated increases in ventilation in awake, healthy humans. Blood oxygen level dependent (BOLD) functional MRI was performed in nine healthy subjects using T2 weighted echo planar imaging. Brain volumes (52 transverse slices, cortex to high spinal cord) were acquired every 3.9 s. The 30 min paradigm consisted of six, 5-min cycles, each cycle comprising 45 s of hypoxic-isocapnia, 45 s of isooxic-hypercapnia and 45 s of hypoxic-hypercapnia, with 55 s of non-stimulatory hyperoxic-isocapnia (control) separating each stimulus period. Ventilation was significantly (p<0.001) increased during hypoxic-isocapnia, isooxic-hypercapnia and hypoxic-hypercapnia (17.0, 13.8, 24.9 L/min respectively) vs. control (8.4 L/min) and was associated with significant (p<0.05, corrected for multiple comparisons) signal increases within a bilateral network that included the basal ganglia, thalamus, red nucleus, cerebellum, parietal cortex, cingulate and superior mid pons. The neuroanatomical structures identified provide evidence for the spontaneous control of breathing to be mediated by higher brain centres, as well as respiratory nuclei in the brainstem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some recent studies have characterized the stability of blood variables commonly measured for the Athlete Biological Passport. The aim of this study was to characterize the impact of different shipments conditions and the quality of the results returned by the haematological analyzer. Twenty-two healthy male subjects provided five EDTA tubes each. Four shipment conditions (24, 36, 48, 72 h) under refrigerated conditions were tested and compared to a set of samples left in the laboratory also under refrigerated conditions (group control). All measurements were conducted using two Sysmex XT-2000i analyzers. Haemoglobin concentration, reticulocytes percentage, and OFF-score numerical data were the same for samples analyzed just after collection and after a shipment under refrigerated conditions up to 72 h. Detailed information reported especially by the differential (DIFF) channel scatterplot of the Sysmex XT-2000i indicated that there were signs of blood deterioration, but were not of relevance for the variables used in the Athlete Biological Passport. As long as the cold chain is guaranteed, the time delay between the collection and the analyses of blood variables can be extended. Copyright© 2015 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.