53 resultados para Biphenyl Compounds
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: To compare the acute and sustained renal hemodynamic effects on hypertensive patients of 100 mg irbesartan and 20 mg enalapril each once daily. PATIENTS: Twenty patients (aged 35-70 years) with uncomplicated, mild-to-moderate essential hypertension and normal serum creatinine levels completed this study. STUDY DESIGN: After random allocation to treatment (n=10 per group), administration schedule (morning or evening) was determined by further random allocation, with crossover of schedules after 6 weeks' therapy. Treatment and administration assignments were double-blind. Twenty-four-hour ambulatory blood pressure was monitored before and after 6 and 12 weeks of therapy. Renal hemodynamics were determined on the first day of drug administration and 12 and 24 h after the last dose during chronic treatment. RESULTS: Administration of each antihypertensive agent induced a renal vasodilatation with no significant change in glomerular filtration rate. However, the time course appeared to differ: irbesartan had no significant acute effect 4 h after the first dose, but during chronic administration a renal vasodilatory response was found 12 and 24 h after the dose; enalapril was effective acutely and 12 h after administration, but no residual effect was found 24 h after the dose. Both antihypertensive agents lowered mean ambulatory blood pressure effectively, with no significant difference between treatments or between administration schedules (morning versus evening). CONCLUSIONS: Irbesartan and enalapril have comparable effects on blood pressure and renal hemodynamics in hypertensive patients with normal renal functioning. However, the time profiles of the renal effects appear to differ, which might be important for long-term renoprotective effects.
Resumo:
OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
OBJECTIVE: Losartan has been shown to increase urinary uric acid excretion and hence to lower serum uric acid levels. The purposes of the present study were: (1) to evaluate the effects of losartan on serum uric acid in hypertensive patients with hyperuricemia and gout, (2) to compare the effects of losartan with those of irbesartan, another angiotensin II receptor antagonist and (3) to evaluate whether losartan 50 mg b.i.d. has a greater impact on serum uric acid levels than losartan 50 mg once a day. METHODS: Thirteen hypertensive patients with hyperuricaemia and gout completed this prospective, randomized, double-blind, cross-over study. Uric acid-lowering drugs were stopped 3 weeks before the beginning of the study. Patients were randomized to receive either losartan 50 mg or irbesartan 150 mg once a day, for 4 weeks. During this phase, a placebo was given in the evening. After 4 weeks, the dose was increased to losartan 50 mg b.i.d., or irbesartan 150 mg b.i.d. for another 4 week period. Subsequently, the patients were switched to the alternative treatment modality. Enalapril (20 mg o.d.) was given during the run-in period and between the two treatment phases. Serum and urinary uric acid were measured at the beginning and at the end of each treatment phase. RESULTS: Our results show that losartan 50 mg once daily decreased serum uric acid levels from 538 +/- 26 to 491 +/- 20 micromol/l (P < 0.01). Irbesartan had no effect on serum uric acid. Increasing the dose of losartan from 50 mg o.d. to 50 mg twice a day, did not further decrease serum uric acid. This may in part be due to a low compliance to the evening dose as measured with an electronic device. Indeed, whatever the prescribed drug, the mean compliance of the evening dose was always significantly lower than that of the morning dose. The uricosuric effect of losartan appears to decrease with time when a new steady state of lower serum uric acid is reached. CONCLUSIONS: In contrast to irbesartan, losartan was uricosuric and decreased serum uric acid levels. Losartan 50 mg b.i.d. did not produce a greater fall in serum uric acid than losartan once a day. Losartan might be a useful therapeutic tool to control blood pressure and reduce serum uric acid levels in hypertensive patients with hyperuricaemia and gout.
Resumo:
BACKGROUND: Persistence is a key factor for long-term blood pressure control, which is of high prognostic importance for patients at increased cardiovascular risk. Here we present the results of a post-marketing survey including 4769 hypertensive patients treated with irbesartan in 886 general practices in Switzerland. The goal of this survey was to evaluate the tolerance and the blood pressure lowering effect of irbesartan as well as the factors affecting persistence in a large unselected population. METHODS: Prospective observational survey conducted in general practices in all regions of Switzerland. Previously untreated and uncontrolled pre-treated patients were started with a daily dose of 150 mg irbesartan and followed up to 6 months. RESULTS: After an observation time slightly exceeding 4 months, the average reduction in systolic and diastolic blood pressure was 20 (95% confidence interval (CI) -19.6 to -20.7 mmHg) and 12 mmHg (95% CI -11.4 to -12.1 mmHg), respectively. At this time, 26% of patients had a blood pressure < 140/90 mmHg and 60% had a diastolic blood pressure < 90 mmHg. The drug was well tolerated with an incidence of adverse events (dizziness, headaches,...) of 8.0%. In this survey more than 80% of patients were still on irbesartan at 4 month. The most important factors predictive of persistence were the tolerability profile and the ability to achieve a blood pressure target < or = 140/90 mmHg before visit 2. Patients who switched from a fixed combination treatment tended to discontinue irbesartan more often whereas those who abandoned the previous treatment because of cough (a class side effect of ACE-Inhibitors) were more persistent with irbesartan. CONCLUSION: The results of this survey confirm that irbesartan is effective, well tolerated and well accepted by patients, as indicated by the good persistence. This post-marketing survey also emphasizes the importance of the tolerability profile and of achieving an early control of blood pressure as positive predictors of persistence.
Resumo:
An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.
Resumo:
The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.
Resumo:
BACKGROUND: Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve haemodynamics in some patients with congestive heart failure. It is now possible to chronically antagonize angiotensin II at its receptor using non-peptide angiotensin II inhibitors such as losartan (DuP 753/MK-954) or TCV 116. EFFECT OF NON-PEPTIDE ANGIOTENSIN II ANTAGONISTS: When administered by mouth, DuP 753 and TCV 116 induce dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the corresponding active metabolites E3174 and CV11974. Preliminary studies performed in hypertensive patients suggest that losartan lowers blood pressure to an equivalent extent to an angiotensin converting enzyme (ACE) inhibitor. CONCLUSIONS: Further investigation is required to show whether these new angiotensin II antagonists compounds compare favourably with ACE inhibitors.
Resumo:
Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Resumo:
The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.
Resumo:
The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.