15 resultados para Benson, Evelyn Holford
em Université de Lausanne, Switzerland
Resumo:
Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought to be caused by an inability to promote efficient recombinational repair. Here, we show that the five paralogs exist in two distinct complexes in human cells: one contains RAD51B, RAD51C, RAD51D, and XRCC2 (defined as BCDX2), whereas the other consists of RAD51C with XRCC3. Both protein complexes have been purified to homogeneity and their biochemical properties investigated. BCDX2 binds single-stranded DNA and single-stranded gaps in duplex DNA, in accord with the proposal that the paralogs play an early (pre-RAD51) role in recombinational repair. Moreover, BCDX2 complex binds specifically to nicks in duplex DNA. We suggest that the extreme sensitivity of paralog-defective cell lines to cross-linking agents is owing to defects in the processing of incised cross links and the consequential failure to initiate recombinational repair at these sites.
Resumo:
CONTEXT: New trial data and drug regimens that have become available in the last 2 years warrant an update to guidelines for antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected adults in resource-rich settings. OBJECTIVE: To provide current recommendations for the treatment of adult HIV infection with ART and use of laboratory-monitoring tools. Guidelines include when to start therapy and with what drugs, monitoring for response and toxic effects, special considerations in therapy, and managing antiretroviral failure. DATA SOURCES, STUDY SELECTION, AND DATA EXTRACTION: Data that had been published or presented in abstract form at scientific conferences in the past 2 years were systematically searched and reviewed by an International Antiviral Society-USA panel. The panel reviewed available evidence and formed recommendations by full panel consensus. DATA SYNTHESIS: Treatment is recommended for all adults with HIV infection; the strength of the recommendation and the quality of the evidence increase with decreasing CD4 cell count and the presence of certain concurrent conditions. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (tenofovir/emtricitabine or abacavir/lamivudine) plus a nonnucleoside reverse transcriptase inhibitor (efavirenz), a ritonavir-boosted protease inhibitor (atazanavir or darunavir), or an integrase strand transfer inhibitor (raltegravir). Alternatives in each class are recommended for patients with or at risk of certain concurrent conditions. CD4 cell count and HIV-1 RNA level should be monitored, as should engagement in care, ART adherence, HIV drug resistance, and quality-of-care indicators. Reasons for regimen switching include virologic, immunologic, or clinical failure and drug toxicity or intolerance. Confirmed treatment failure should be addressed promptly and multiple factors considered. CONCLUSION: New recommendations for HIV patient care include offering ART to all patients regardless of CD4 cell count, changes in therapeutic options, and modifications in the timing and choice of ART in the setting of opportunistic illnesses such as cryptococcal disease and tuberculosis.
Resumo:
IMPORTANCE: New data and antiretroviral regimens expand treatment choices in resource-rich settings and warrant an update of recommendations to treat adults infected with human immunodeficiency virus (HIV). OBJECTIVE: To provide updated treatment recommendations for adults with HIV, emphasizing when to start treatment; what treatment to start; the use of laboratory monitoring tools; and managing treatment failure, switches, and simplification. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS: An International Antiviral Society-USA panel of experts in HIV research and patient care considered previous data and reviewed new data since the 2012 update with literature searches in PubMed and EMBASE through June 2014. Recommendations and ratings were based on the quality of evidence and consensus. RESULTS: Antiretroviral therapy is recommended for all adults with HIV infection. Evidence for benefits of treatment and quality of available data increase at lower CD4 cell counts. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (NRTIs; abacavir/lamivudine or tenofovir disoproxil fumarate/emtricitabine) and a third single or boosted drug, which should be an integrase strand transfer inhibitor (dolutegravir, elvitegravir, or raltegravir), a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir). Alternative regimens are available. Boosted protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. New guidance for optimal timing of monitoring of laboratory parameters is provided. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Regimen switches for adverse effects, convenience, or to reduce costs should not jeopardize antiretroviral potency. CONCLUSIONS AND RELEVANCE: After confirmed diagnosis of HIV infection, antiretroviral therapy should be initiated in all individuals who are willing and ready to start treatment. Regimens should be selected or changed based on resistance test results with consideration of dosing frequency, pill burden, adverse toxic effect profiles, comorbidities, and drug interactions.
Resumo:
Using paradata gathered from the 11-nation Survey of Health, Ageing and Retirement in Europe (SHARE), this paper examines the impact of the first contact attempt and the first contact properties, respectively, on contact and response efficiency using logistic multilevel models. We find that despite the different sample frames and interviewer compensation structure between countries, there are no considerable country effects with respect to making contact, once interviewer effects are controlled. Moreover, results point to an increased efficiency associated with evenings especially on Sundays, at least on the very first contact attempt. For attempts that result in initial contact, Saturday afternoons are most likely to eventually lead to completed interviews, followed by initial contact on weekdays during the daytime. We hypothesize that this may be due to the SHARE sample being composed of people aged 50 and over.
Resumo:
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.
Resumo:
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.
Resumo:
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.
Resumo:
BACKGROUND: : A primary goal of clinical pharmacology is to understand the factors that determine the dose-effect relationship and to use this knowledge to individualize drug dose. METHODS: : A principle-based criterion is proposed for deciding among alternative individualization methods. RESULTS: : Safe and effective variability defines the maximum acceptable population variability in drug concentration around the population average. CONCLUSIONS: : A decision on whether patient covariates alone are sufficient, or whether therapeutic drug monitoring in combination with target concentration intervention is needed, can be made by comparing the remaining population variability after a particular dosing method with the safe and effective variability.
Resumo:
The RuvB protein is induced in Escherichia coli as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of DNA. In vitro, the RuvB protein promotes the branch migration of Holliday junctions and has a DNA helicase activity in reactions that require ATP hydrolysis. We have used electron microscopy, image analysis, and three-dimensional reconstruction to show that the RuvB protein, in the presence of ATP, forms a dodecamer on double-stranded DNA in which two stacked hexameric rings encircle the DNA and are oriented in opposite directions with D6 symmetry. Although helicases are ubiquitous and essential for many aspects of DNA repair, replication, and transcription, three-dimensional reconstruction of a helicase has not yet been reported, to our knowledge. The structural arrangement that is seen may be common to other helicases, such as the simian virus 40 large tumor antigen.
Resumo:
In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C--XRCC3 complex binds single-stranded, but not duplex DNA, to form protein--DNA networks that have been visualized by electron microscopy.
Resumo:
Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference.
Resumo:
BACKGROUND: The past three decades have seen rapid improvements in the diagnosis and treatment of most cancers and the most important contributor has been research. Progress in rare cancers has been slower, not least because of the challenges of undertaking research. SETTINGS: The International Rare Cancers Initiative (IRCI) is a partnership which aims to stimulate and facilitate the development of international clinical trials for patients with rare cancers. It is focused on interventional--usually randomized--clinical trials with the clear goal of improving outcomes for patients. The key challenges are organisational and methodological. A multi-disciplinary workshop to review the methods used in ICRI portfolio trials was held in Amsterdam in September 2013. Other as-yet unrealised methods were also discussed. RESULTS: The IRCI trials are each presented to exemplify possible approaches to designing credible trials in rare cancers. Researchers may consider these for use in future trials and understand the choices made for each design. INTERPRETATION: Trials can be designed using a wide array of possibilities. There is no 'one size fits all' solution. In order to make progress in the rare diseases, decisions to change practice will have to be based on less direct evidence from clinical trials than in more common diseases.