55 resultados para Bayesian statistical decision theory
em Université de Lausanne, Switzerland
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
The knowledge of the relationship that links radiation dose and image quality is a prerequisite to any optimization of medical diagnostic radiology. Image quality depends, on the one hand, on the physical parameters such as contrast, resolution, and noise, and on the other hand, on characteristics of the observer that assesses the image. While the role of contrast and resolution is precisely defined and recognized, the influence of image noise is not yet fully understood. Its measurement is often based on imaging uniform test objects, even though real images contain anatomical backgrounds whose statistical nature is much different from test objects used to assess system noise. The goal of this study was to demonstrate the importance of variations in background anatomy by quantifying its effect on a series of detection tasks. Several types of mammographic backgrounds and signals were examined by psychophysical experiments in a two-alternative forced-choice detection task. According to hypotheses concerning the strategy used by the human observers, their signal to noise ratio was determined. This variable was also computed for a mathematical model based on the statistical decision theory. By comparing theoretical model and experimental results, the way that anatomical structure is perceived has been analyzed. Experiments showed that the observer's behavior was highly dependent upon both system noise and the anatomical background. The anatomy partly acts as a signal recognizable as such and partly as a pure noise that disturbs the detection process. This dual nature of the anatomy is quantified. It is shown that its effect varies according to its amplitude and the profile of the object being detected. The importance of the noisy part of the anatomy is, in some situations, much greater than the system noise. Hence, reducing the system noise by increasing the dose will not improve task performance. This observation indicates that the tradeoff between dose and image quality might be optimized by accepting a higher system noise. This could lead to a better resolution, more contrast, or less dose.
Resumo:
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Resumo:
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.
Resumo:
This study presents a classification criteria for two-class Cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland, law enforcement authorities regularly ask laboratories to determine cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. In this study, the classification analysis is based on data obtained from the relative proportion of three major leaf compounds measured by gas-chromatography interfaced with mass spectrometry (GC-MS). The aim is to discriminate between drug type (illegal) and fiber type (legal) cannabis at an early stage of the growth. A Bayesian procedure is proposed: a Bayes factor is computed and classification is performed on the basis of the decision maker specifications (i.e. prior probability distributions on cannabis type and consequences of classification measured by losses). Classification rates are computed with two statistical models and results are compared. Sensitivity analysis is then performed to analyze the robustness of classification criteria.
Resumo:
What genotype should the scientist specify for conducting a database search to try to find the source of a low-template-DNA (lt-DNA) trace? When the scientist answers this question, he or she makes a decision. Here, we approach this decision problem from a normative point of view by defining a decision-theoretic framework for answering this question for one locus. This framework combines the probability distribution describing the uncertainty over the trace's donor's possible genotypes with a loss function describing the scientist's preferences concerning false exclusions and false inclusions that may result from the database search. According to this approach, the scientist should choose the genotype designation that minimizes the expected loss. To illustrate the results produced by this approach, we apply it to two hypothetical cases: (1) the case of observing one peak for allele xi on a single electropherogram, and (2) the case of observing one peak for allele xi on one replicate, and a pair of peaks for alleles xi and xj, i ≠ j, on a second replicate. Given that the probabilities of allele drop-out are defined as functions of the observed peak heights, the threshold values marking the turning points when the scientist should switch from one designation to another are derived in terms of the observed peak heights. For each case, sensitivity analyses show the impact of the model's parameters on these threshold values. The results support the conclusion that the procedure should not focus on a single threshold value for making this decision for all alleles, all loci and in all laboratories.
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
This paper applies probability and decision theory in the graphical interface of an influence diagram to study the formal requirements of rationality which justify the individualization of a person found through a database search. The decision-theoretic part of the analysis studies the parameters that a rational decision maker would use to individualize the selected person. The modeling part (in the form of an influence diagram) clarifies the relationships between this decision and the ingredients that make up the database search problem, i.e., the results of the database search and the different pairs of propositions describing whether an individual is at the source of the crime stain. These analyses evaluate the desirability associated with the decision of 'individualizing' (and 'not individualizing'). They point out that this decision is a function of (i) the probability that the individual in question is, in fact, at the source of the crime stain (i.e., the state of nature), and (ii) the decision maker's preferences among the possible consequences of the decision (i.e., the decision maker's loss function). We discuss the relevance and argumentative implications of these insights with respect to recent comments in specialized literature, which suggest points of view that are opposed to the results of our study.
Resumo:
A recent publication in this journal [Neumann et al., Forensic Sci. Int. 212 (2011) 32-46] presented the results of a field study that revealed the data provided by the fingermarks not processed in a forensic science laboratory. In their study, the authors were interested in the usefulness of this additional data in order to determine whether such fingermarks would have been worth submitting to the fingermark processing workflow. Taking these ideas as a starting point, this communication here places the fingermark in its context of a case brought before a court, and examines the question of processing or not processing a fingermark from a decision-theoretic point of view. The decision-theoretic framework presented provides an answer to this question in the form of a quantified expression of the expected value of information (EVOI) associated with the processed fingermark, which can then be compared with the cost of processing the mark.
Resumo:
BACKGROUND: The purpose of this study was to assess decision making in patients with multiple sclerosis (MS) at the earliest clinically detectable time point of the disease. METHODS: Patients with definite MS (n = 109) or with clinically isolated syndrome (CIS, n = 56), a disease duration of 3 months to 5 years, and no or only minor neurological impairment (Expanded Disability Status Scale [EDSS] score 0-2.5) were compared to 50 healthy controls using the Iowa Gambling Task (IGT). RESULTS: The performance of definite MS, CIS patients, and controls was comparable for the two main outcomes of the IGT (learning index: p = 0.7; total score: p = 0.6). The IGT learning index was influenced by the educational level and the co-occurrence of minor depression. CIS and MS patients developing a relapse during an observation period of 15 months dated from IGT testing demonstrated a lower learning index in the IGT than patients who had no exacerbation (p = 0.02). When controlling for age, gender and education, the difference between relapsing and non-relapsing patients was at the limit of significance (p = 0.06). CONCLUSION: Decision making in a task mimicking real life decisions is generally preserved in early MS patients as compared to controls. A possible consequence of MS relapsing activity in the impairment of decision making ability is also suspected in the early phase of MS.
Resumo:
Interactive Choice Aid (ICA) is a decision aid, introduced in this paper, that systematically assists consumers with online purchase decisions. ICA integrates aspects from prescriptive decision theory, insights from descriptive decision research, and practical considerations; thereby combining pre-existing best practices with novel features. Instead of imposing an objectively ideal but unnatural decision procedure on the user, ICA assists the natural process of human decision-making by providing explicit support for the execution of the user's decision strategies. The application contains an innovative feature for in-depth comparisons of alternatives through which users' importance ratings are elicited interactively and in a playful way. The usability and general acceptance of the choice aid was studied; results show that ICA is a promising contribution and provides insights that may further improve its usability.
Resumo:
At a time when disciplined inference and decision making under uncertainty represent common aims to participants in legal proceedings, the scientific community is remarkably heterogenous in its attitudes as to how these goals ought to be achieved. Probability and decision theory exert a considerable influence, and we think by all reason rightly do so, but they go against a mainstream of thinking that does not embrace-or is not aware of-the 'normative' character of this body of theory. It is normative, in the sense understood in this article, in that it prescribes particular properties, typically (logical) coherence, to which reasoning and decision making ought to conform. Disregarding these properties can result in diverging views which are occasionally used as an argument against the theory, or as a pretext for not following it. Typical examples are objections according to which people, both in everyday life but also individuals involved at various levels in the judicial process, find the theory difficult to understand and to apply. A further objection is that the theory does not reflect how people actually behave. This article aims to point out in what sense these examples misinterpret the analytical framework in its normative perspective. Through examples borrowed mostly from forensic science contexts, it is argued that so-called intuitive scientific attitudes are particularly liable to such misconceptions. These attitudes are contrasted with a statement of the actual liberties and constraints of probability and decision theory and the view according to which this theory is normative.
Resumo:
Chaque jour, le médecin utilise dans sa pratique des scores cliniques. Ces scores sont souvent des aides à la décision médicale. Les étapes de validation des scores cliniques sont par contre souvent méconnues du médecin. Cette revue rappelle les bases théoriques de la validation d'un score clinique et propose des exercices pratiques. [Abstract] Physicians are using clinical scores on a regular basis. These scores are generally helpful in making medical decisions. However, the process of validation of clinical scores is often unknown to the physicians. This paper reviews the theory of validation of clinical scores and proposes practical exercises.
Resumo:
We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.