71 resultados para Bayesian hierarchical linear model
em Université de Lausanne, Switzerland
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
PURPOSE: The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. METHODS: Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. RESULTS: The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. CONCLUSION: A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Data for trends in glycaemia and diabetes prevalence are needed to understand the effects of diet and lifestyle within populations, assess the performance of interventions, and plan health services. No consistent and comparable global analysis of trends has been done. We estimated trends and their uncertainties in mean fasting plasma glucose (FPG) and diabetes prevalence for adults aged 25 years and older in 199 countries and territories. METHODS: We obtained data from health examination surveys and epidemiological studies (370 country-years and 2·7 million participants). We converted systematically between different glycaemic metrics. For each sex, we used a Bayesian hierarchical model to estimate mean FPG and its uncertainty by age, country, and year, accounting for whether a study was nationally, subnationally, or community representative. FINDINGS: In 2008, global age-standardised mean FPG was 5·50 mmol/L (95% uncertainty interval 5·37-5·63) for men and 5·42 mmol/L (5·29-5·54) for women, having risen by 0·07 mmol/L and 0·09 mmol/L per decade, respectively. Age-standardised adult diabetes prevalence was 9·8% (8·6-11·2) in men and 9·2% (8·0-10·5) in women in 2008, up from 8·3% (6·5-10·4) and 7·5% (5·8-9·6) in 1980. The number of people with diabetes increased from 153 (127-182) million in 1980, to 347 (314-382) million in 2008. We recorded almost no change in mean FPG in east and southeast Asia and central and eastern Europe. Oceania had the largest rise, and the highest mean FPG (6·09 mmol/L, 5·73-6·49 for men; 6·08 mmol/L, 5·72-6·46 for women) and diabetes prevalence (15·5%, 11·6-20·1 for men; and 15·9%, 12·1-20·5 for women) in 2008. Mean FPG and diabetes prevalence in 2008 were also high in south Asia, Latin America and the Caribbean, and central Asia, north Africa, and the Middle East. Mean FPG in 2008 was lowest in sub-Saharan Africa, east and southeast Asia, and high-income Asia-Pacific. In high-income subregions, western Europe had the smallest rise, 0·07 mmol/L per decade for men and 0·03 mmol/L per decade for women; North America had the largest rise, 0·18 mmol/L per decade for men and 0·14 mmol/L per decade for women. INTERPRETATION: Glycaemia and diabetes are rising globally, driven both by population growth and ageing and by increasing age-specific prevalences. Effective preventive interventions are needed, and health systems should prepare to detect and manage diabetes and its sequelae. FUNDING: Bill & Melinda Gates Foundation and WHO.
Resumo:
Short-term dynamic psychotherapy (STDP) has rarely been investigated with regard to its underlying mechanisms of change, even if psychoanalytic theory informs us about several potential putative mechanisms of change in patients. Change in overall defensive functioning is one. In this study, we explored the role of overall defensive functioning, by comparing it on the process level with the neighbouring concept of overall coping functioning. A total of N=32 patients, mainly presenting adjustment disorder, were included in the study. The patients underwent STDP up to 40 sessions; three sessions per psychotherapy were transcribed and analyzed by using two observer-rating scales: Defense Mechanism Rating Scales (Perry, 1990) and Coping Action Patterns (Perry, Drapeau, Dunkley, & Blake, 2005). Hierarchical linear modeling was applied to model the change over the course of therapy and relate it to outcome. Results suggest that STDP has an effect on the target variable of overall defensive functioning, which was absent for overall coping functioning. Links with outcome confirm the importance of the effect. These results are discussed from methodological and clinical viewpoints.
Resumo:
The shape of alliance processes over the course of psychotherapy has already been studied in several process-outcome studies on very brief psychotherapy. The present study applies the shape-of-change methodology to short-term dynamic psychotherapies and complements this method with hierarchical linear modeling. A total of 50 psychotherapies of up to 40 sessions were included. Alliance was measured at the end of each session. The results indicate that a linear progression model is most adequate. Three main patterns were found: stable, linear, and quadratic growth. The linear growth pattern, along with the slope parameter, was related to treatment outcome. This study sheds additional light on alliance process research, underscores the importance of linear alliance progression for outcome, and also fosters a better understanding of its limitations.
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
Gastroschisis is an abdominal wall defect more prevalent in offspring of young mothers. It is known to be increasing in prevalence despite the general decrease in the proportion of births to young European women. We investigated whether the increase in prevalence was restricted to the high-risk younger mothers. We analysed 936 cases of gastroschisis from 25 population-based registries in 15 European countries, 1980-2002. We fitted a Bayesian Hierarchical Model which allowed us to estimate trend, to estimate which registries were significantly different from the common distribution, and to adjust simultaneously for maternal age, time (in grouped years) and the random variation between registries. The maternal age-standardised prevalence (standardised to the year 2000 European maternal age structure) increased almost fourfold from 0.54 [95% Credible Interval (CrI) 0.37, 0.75] per 10,000 births in 1980-84 to 2.12 [95% CrI 1.85, 2.40] per 10,000 births in 2000-02. The relative risk of gastroschisis for mothers <20 years of age in 1995-2002 was 7.0 [95% CrI 5.6, 8.7]. There were geographical differences within Europe, with higher rates of gastroschisis in the UK, and lower rates in Italy after adjusting for maternal age. After standardising for regional variation, our results showed that the increase in risk over time was the same for mothers of all ages--the increase for mothers <20 years was 3.96-fold compared with an increase of 3.95-fold for mothers in the other age groups. These findings indicate that the phenomenon of increasing gastroschisis prevalence is not restricted to younger mothers only.
Resumo:
We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.
Resumo:
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Resumo:
Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal.
Resumo:
One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. We used data from 751 studies including 4,372,000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. Wellcome Trust.
Resumo:
BACKGROUND: Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. METHODS: We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m(2) [underweight], 18·5 kg/m(2) to <20 kg/m(2), 20 kg/m(2) to <25 kg/m(2), 25 kg/m(2) to <30 kg/m(2), 30 kg/m(2) to <35 kg/m(2), 35 kg/m(2) to <40 kg/m(2), ≥40 kg/m(2) [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. FINDINGS: We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m(2) (95% credible interval 21·3-22·1) in 1975 to 24·2 kg/m(2) (24·0-24·4) in 2014 in men, and from 22·1 kg/m(2) (21·7-22·5) in 1975 to 24·4 kg/m(2) (24·2-24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m(2) in central Africa and south Asia to 29·2 kg/m(2) (28·6-29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m(2) (21·4-22·3) in south Asia to 32·2 kg/m(2) (31·5-32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5-17·4) to 8·8% (7·4-10·3) in men and from 14·6% (11·6-17·9) to 9·7% (8·3-11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8-29·2) in men and 24·0% (18·9-29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4-4·1) in 1975 to 10·8% (9·7-12·0) in 2014 in men, and from 6·4% (5·1-7·8) to 14·9% (13·6-16·1) in women. 2·3% (2·0-2·7) of the world's men and 5·0% (4·4-5·6) of women were severely obese (ie, have BMI ≥35 kg/m(2)). Globally, prevalence of morbid obesity was 0·64% (0·46-0·86) in men and 1·6% (1·3-1·9) in women. INTERPRETATION: If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia. FUNDING: Wellcome Trust, Grand Challenges Canada.
Resumo:
OBJECTIVE: To assess satisfaction among female patients of a youth friendly clinic and to determine with which factors this was associated. METHODS: A cross-sectional survey was conducted in an adolescent clinic in Lausanne, Switzerland, between March and May 2008. All female patients who had made at least one previous visit were eligible. Three hundred and eleven patients aged 12-22 years were included. We performed bivariate analysis to compare satisfied and non-satisfied patients and constructed a log-linear model. RESULTS: Ninety-four percent of patients were satisfied. Satisfied female adolescents were significantly more likely to feel that their complaints were heard, that the caregiver understood their problems, to have no change of physician, to have received the correct treatment/help and to follow the caregiver's advice. The log-linear model highlighted four factors directly linked with patient satisfaction: outcome of care, continuity of care, adherence to treatment and the feeling of being understood. CONCLUSIONS: The main point for female adolescent patient satisfaction lies in a long term, trustworthy relationship with their caregiver. Confidentiality and accessibility were secondary for our patients.
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.