2 resultados para Base metonímica

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resection of midline skull base lesions involve approaches needing extensive neurovascular manipulation. Transnasal endoscopic approach (TEA) is minimally invasive and ideal for certain selected lesions of the anterior skull base. A thorough knowledge of endonasal endoscopic anatomy is essential to be well versed with its surgical applications and this is possible only by dedicated cadaveric dissections. The goal in this study was to understand endoscopic anatomy of the orbital apex, petrous apex and the pterygopalatine fossa. Six cadaveric heads (3 injected and 3 non injected) and 12 sides, were dissected using a TEA outlining systematically, the steps of surgical dissection and the landmarks encountered. Dissection done by the "2 nostril, 4 hands" technique, allows better transnasal instrumentation with two surgeons working in unison with each other. The main surgical landmarks for the orbital apex are the carotid artery protuberance in the lateral sphenoid wall, optic nerve canal, lateral optico-carotid recess, optic strut and the V2 nerve. Orbital apex includes structures passing through the superior and inferior orbital fissure and the optic nerve canal. Vidian nerve canal and the V2 are important landmarks for the petrous apex. Identification of the sphenopalatine artery, V2 and foramen rotundum are important during dissection of the pterygopalatine fossa. In conclusion, the major potential advantage of TEA to the skull base is that it provides a direct anatomical route to the lesion without traversing any major neurovascular structures, as against the open transcranial approaches which involve more neurovascular manipulation and brain retraction. Obviously, these approaches require close cooperation and collaboration between otorhinolaryngologists and neurosurgeons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.