52 resultados para Basaltic rocks
em Université de Lausanne, Switzerland
Resumo:
Abstract The purpose of this study is to unravel the geodynamic evolution of Thailand and, from that, to extend the interpretation to the rest of Southeast Asia. The methodology was based in a first time on fieldwork in Northern Thailand and Southernmost Myanmar, using a multidisciplinary approach, and then on the compilation and re-interpretation, in a plate tectonics point of view, of existing data about the whole Southeast Asia. The main results concern the Nan-Uttaradit suture, the Chiang Mai Volcanic Belt and the proposition of a new location for the Palaeotethys suture. This led to the establishment of a new plate tectonic model for the geodynamic evolution of Southeast Asia, implying the existence new terranes (Orang Laut and the redefinition of Shan-Thai) and the role of the Palaeopacific Ocean in the tectonic development of the area. The model proposed here considers the Palaeotethys suture as located along the Tertiary Mae Yuam Fault, which represents the divide between the Cimmerian Sibumasu terrane and the Indochina-derived Shan-Thai block. The term Shan-Thai, previously used to define the Cimmerian area (when the Palaeotethys suture was thought to represented by the Nan-Uttaradit suture), was redefined here by keeping its geographical location within the Shan States of Myanmar and Central-Northern Thailand, but attributing it an East Asian Origin. Its detachment from Indochina was the result of the Early Permian opening of the Nan basin. The Nan basin closed during the Middle Triassic, before the deposition of Carnian-Norian molasse. The modalities of the closure of the basin imply a first phase of Middle Permian obduction, followed by final eastwards subduction. The Chiang Mai Volcanic Belt consists of scattered basaltic rocks erupted at least during the Viséan in an extensional continental intraplate setting, on the Shan-Thai part of the Indochina block. The Viséan age was established by the dating of limestone stratigraphically overlying the basalts. In several localities of the East Asian Continent, coeval extensional features occur, possibly implying one or more Early Carboniferous extensional events at a regional scale. These events occurred either due to the presence of a mantle plume or to the roll-back of the Palaeopacific Ocean, subducting beneath Indochina and South China, or both. The Palaeopacific Ocean is responsible, during the Early Permian, for the opening of the Song Ma and Poko back-arcs (Vietnam) with the consequent detachment of the Orang Laut Terranes (Eastern Vietnam, West Sumatra, Kalimantan, Palawan, Taiwan). The Late Triassic/Early Jurassic closure of the Eastern Palaeotethys is considered as having taken place by subduction beneath its southern margin (Gondwana), due to the absence of Late Palaeozoic arc magmatism on its northern (Indochinese) margin and the presence of volcanism on the Cimmerian blocks (Mergui, Lhasa). Résumé Le but de cette étude est d'éclaircir l'évolution géodynamique de la Thaïlande et, à partir de cela, d'étendre l'interprétation au reste de l'Asie du Sud-Est. La méthodologie utilisée est basée dans un premier temps sur du travail de terrain en Thaïlande du nord et dans l'extrême sud du Myanmar, en se basant sur une approche pluridisciplinaire. Dans un deuxième temps, la compilation et la réinterprétation de données préexistantes sur l'Asie du Sud-est la été faite, dans une optique basée sur la tectonique des plaques. Les principaux résultats de ce travail concernent la suture de Nan-Uttaradit, la « Chiang Mai Volcanic Belt» et la proposition d'une nouvelle localité pour la suture de la Paléotethys. Ceci a conduit à l'établissement d'un nouveau modèle pour l'évolution géodynamique de l'Asie du Sud-est, impliquant l'existence de nouveaux terranes (Orang Laut et Shan-Thai redéfini) et le rôle joué par le Paléopacifique dans le développement tectonique de la région. Le modèle présenté ici considère que la suture de la Paléotethys est située le long de la faille Tertiaire de Mae Yuam, qui représente la séparation entre le terrain Cimmérien de Sibumasu et le bloc de Shan-Thai, d'origine Indochinoise. Le terme Shan-Thai, anciennement utilise pour définir le bloc Cimmérien (quand la suture de la Paléotethys était considérée être représentée par la suture de Nan-Uttaradit), a été redéfini ici en maintenant sa localisation géographique dans les états Shan du Myanmar et la Thaïlande nord-centrale, mais en lui attribuant une origine Est Asiatique. Son détachement de l'Indochine est le résultat de l'ouverture du basin de Nan au Permien Inférieur. Le basin de Nan s'est fermé pendant le Trias Moyen, avant le dépôt de molasse Carnienne-Norienne. Les modalités de fermeture du basin invoquent une première phase d'obduction au Permien Moyen, suivie par une subduction finale vers l'est. La "Chiang Mai Volcanic Belt" consiste en des basaltes éparpillés qui ont mis en place au moins pendant le Viséen dans un contexte extensif intraplaque continental sur la partie de l'Indochine correspondant au bloc de Shan-Thai. L'âge Viséen a été établi sur la base de la datation de calcaires qui surmontent stratigraphiquement les basaltes. Dans plusieurs localités du continent Est Asiatique, des preuves d'extension plus ou moins contemporaines ont été retrouvées, ce qui implique l'existence d'une ou plusieurs phases d'extension au Carbonifère Inférieur a une échelle régionale. Ces événements sont attribués soit à la présence d'un plume mantellique, ou au rollback du Paléopacifique, qui subductait sous l'Indochine et la Chine Sud, soit les deux. Pendant le Permien inférieur, le Paléopacifique est responsable pour l'ouverture des basins d'arrière arc de Song Ma et Poko (Vietnam), induisant le détachement des Orang Laut Terranes (Est Vietnam, Ouest Sumatra, Kalimantan, Palawan, Taiwan). La fermeture de la Paléotethys Orientale au Trias Supérieur/Jurassique Inférieur est considérée avoir eu lieu par subduction sous sa marge méridionale (Gondwana), à cause de l'absence de magmatisme d'arc sur sa marge nord (Indochinoise) et de la présence de volcanisme sur les blocs Cimmériens de Lhassa et Sibumasu (Mergui). Résumé large public L'histoire géologique de l'Asie du Sud-est depuis environ 430 millions d'années a été déterminée par les collisions successives de plusieurs continents les uns avec les autres. Il y a environ 430 millions d'années, au Silurien, un grand continent appelé Gondwana, a commencé à se «déchirer» sous l'effet des contraintes tectoniques qui le tiraient. Cette extension a provoqué la rupture du continent et l'ouverture d'un grand océan, appelé Paléotethys, éloignant les deux parties désormais séparées. C'est ainsi que le continent Est Asiatique, composé d'une partie de la Chine actuelle, de la Thaïlande, du Myanmar, de Sumatra, du Vietnam et de Bornéo a été entraîné avec le bord (marge) nord de la Paléotethys, qui s'ouvrait petit à petit. Durant le Carbonifère Supérieur, il y a environ 300 millions d'années, le sud du Gondwana subissait une glaciation, comme en témoigne le dépôt de sédiments glaciaires dans les couches de cet âge. Au même moment le continent Est Asiatique se trouvait à des latitudes tropicales ou équatoriales, ce qui permettait le dépôt de calcaires contenant différents fossiles de foraminifères d'eau chaude et de coraux. Durant le Permien Inférieur, il y a environ 295 millions d'années, la Paléotethys Orientale, qui était un relativement vieil océan avec une croûte froide et lourde, se refermait. La croûte océanique a commencé à s'enfoncer, au sud, sous le Gondwana. C'est ce que l'on appelle la subduction. Ainsi, le Gondwana s'est retrouvé en position de plaque supérieure, par rapport à la Paléotethys qui, elle, était en plaque inférieure. La plaque inférieure en subductant a commencé à reculer. Comme elle ne pouvait pas se désolidariser de la plaque supérieure, en reculant elle l'a tirée. C'est le phénomène du «roll-back ». Cette traction a eu pour effet de déchirer une nouvelle fois le Gondwana, ce qui a résulté en la création d'un nouvel Océan, la Neotethys. Cet Océan en s'ouvrant a déplacé une longue bande continentale que l'on appelle les blocs Cimmériens. La Paléotethys était donc en train de se fermer, la Neotethys de s'ouvrir, et entre deux les blocs Cimmériens se rapprochaient du Continent Est Asiatique. Pendant ce temps, le continent Est Asiatique était aussi soumis à des tensions tectoniques. L'Océan Paléopacifique, à l'est de celui-ci, était aussi en train de subducter. Cette subduction, par roll-back, a déchiré le continent en détachant une ligne de microcontinents appelés ici « Orang Laut Terranes », séparés du continent par deux océans d'arrière arc : Song Ma et Poko. Ceux-ci sont composés de Taiwan, Palawan, Bornéo ouest, Vietnam oriental, et la partie occidentale de Sumatra. Un autre Océan s'est ouvert pratiquement au même moment dans le continent Est Asiatique : l'Océan de Nan qui, en s'ouvrant, a détaché un microcontinent appelé Shan-Thai. La fermeture de l'Océan de Nan, il y a environ 230 millions d'années a resolidarisé Shan-Thai et le continent Est Asiatique et la trace de cet événement est aujourd'hui enregistrée dans la suture (la cicatrice de l'Océan) de Nan-Uttaradit. La cause de l'ouverture de l'Océan de Nan peut soit être due à la subduction du Paléopacifique, soit aux fait que la subduction de la Paléotethys tirait le continent Est Asiatique par le phénomène du « slab-pull », soit aux deux. La subduction du Paléopacifique avait déjà crée de l'extension dans le continent Est Asiatique durant le Carbonifère Inférieur (il y a environ 340-350 millions d'années) en créant des bassins et du volcanisme, aujourd'hui enregistré en différents endroits du continent, dont la ceinture volcanique de Chiang Mai, étudiée ici. A la fin du Trias, la Paléotethys se refermait complètement, et le bloc Cimmérien de Sibumasu entrait en collision avec le continent Est Asiatique. Comme c'est souvent le cas avec les grands océans, il n'y a pas de suture proprement dite, avec des fragments de croûte océanique, pour témoigner de cet évènement. Celui-ci est visible grâce à la différence entre les sédiments du Carbonifère Supérieur et du Permieñ Inférieur de chaque domaine : dans le domaine Cimmérien ils sont de type glaciaire alors que dans le continent Est Asiatique ils témoignent d'un climat tropical. Les océans de Song Ma et Poko se sont aussi refermés au Trias, mais eux ont laissé des sutures visibles
Resumo:
Structural analysis of low-grade rocks highlights the allochthonous character of Mesozoic schists in southeastern Rhodope, Bulgaria. The deformation can be related to the Late Jurassic-Early Cretaceous thrusting and Tertiary detachment faulting. Petrologic and geochemical data show a volcanic arc origin of the greenschists and basaltic rocks. These results are interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac Ocean under the supra-subduction back-arc Vardar ocean/island arc system. This arc-trench system collided with the Rhodope in Late Jurassic times. (C) 2003 Academie des sciences. Published by Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu-Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30-50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous-Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54-57 center dot 5 wt % SiO(2)) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO(2) 59-66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650-1350 ppm, Ba 650-1800 ppm, Zr 100-225 ppm, Th 5-25 ppm, La 15-65 ppm) and Th/La ratios (0 center dot 28-0 center dot 36) than Pichincha and Pululahua, and more primitive Sr ((87)Sr/(86)Sr similar to 0 center dot 7038-0 center dot 7039) and Nd (epsilon(Nd) similar to +5 center dot 5 to +6 center dot 1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle-crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.
Resumo:
Recent isotopic and biochronologic dating has demonstrated that the Gets nappe contains remnants of the oldest part of the oceanic crust of the Alpine Tethys. The ophiolites are associated with deep sea sediments, platform carbonates and continental crustal elements suggesting a transitional environment between continental and oceanic crust. Therefore, the ophiolites from the Gets nappe provide the opportunity to assess the nature of mantle source and the magma evolution during the final rifting stage of the European lithosphere. Trace clement analyses of mafic rocks can he divided into two sets: (1) P, Zr and Y contents are consistent with those of mid-ocean ridge basalts and REE patterns have a P-MORB affinity. (2) P,Zr Ti and Y contents are compatible with within-plate basalts and are characterized by REE spectra similar to that of T-MORB. Both have Nd isotopic compositions similar to those of synrift magma of the Red Sea and to the Rhine Graben. The model ages are in agreement with an LREE-enriched subcontinental mantle source derived from depleted mantle 800 to 900 Ma ago. Minor, trace element and Sm-Nd compositions suggest that these rocks are basaltic relies of an earliest stage of oceanic spreading i.e. an embryonic ocean. Comparison between REE patterns, Nd and Sr isotope compositions, isotopic and biochronologic ages from different Alpine Tethys ophiolites shows that samples with enriched LREE are from the older ophiolitic suites and are relies of the embryonic ocean floor. Later phases of ocean spreading are characterized by basalts that are depleted in LREE.
Resumo:
Except for the first 2 years since July 29, 1968, Arenal volcano has continuously erupted compositionally monotonous and phenocryst-rich (similar to35%) basaltic andesites composed of plagioclase (plag), orthopyroxene (opx), clinopyroxene (cpx), spinel olivine. Detailed textural and compositional analyses of phenocrysts, mineral inclusions, and microlites reveal comparable complexities in any given sample and identify mineral components that require a minimum of four crystallization environments. We suggest three distinct crystallization environments crystallized low Mg# (<78) silicate phases from andesitic magma but at different physical conditions, such as variable pressure of crystallization and water conditions. The dominant environment, i.e., the one which accounts for the majority of minerals and overprinted all other assemblages near rims of phenocrysts, cocrystallized clinopyroxene (Mg# similar to71-78), orthopyroxene (Mg# similar to71-78), titanomagnetite and plagioclase (An(60) to An(85)). The second environment cocrystallized clinopyroxene (Mg# 71-78), olivine (<Fo(78)), titanomagnetite, and very high An (similar to90) plagioclase, while the third cocrystallized clinopyroxene (Mg# 71-78) with high (>7) Al/Ti and high (>4 wt.%) Al2O3, titanomagnetite with considerable Al2O3 (10-18 wt.%) and possibly olivine but appears to lack plagioclase. A fourth crystallization environment is characterized by clinopyroxene (e.g., Mg#=similar to78-85; Cr2O3=0.15-0.7 wt.%), Al-, Cr-rich spinel olivine (similar toFo(80)), and in some circumstances high-An (>80) plagioclase. This assemblage seems to record mafic inputs into the Arenal system and crystallization at high to low pressures. Single crystals cannot be completely classified as xenocrysts, antecrysts (cognate crystals), or phenocrysts, because they often contain different parts each representing a different crystallization environment and thus belong to different categories. Bulk compositions are mostly too mafic to have crystallized the bulk of ferromagnesian minerals and thus likely do not represent liquid compositions. On the other hand, they are the cumulative products of multiple mixing events assembling melts and minerals from a variety of sources. The driving force for this multistage mixing evolution to generate erupting basaltic andesites is thought to be the ascent of mafic magma from lower crustal levels to subvolcanic depths which at the same time may also go through compositional modification by fractionation and assimilation of country rocks. Thus, mafic magmas become basaltic andesite through mixing, fractionation and assimilation by the time they arrive at subvolcanic depths. We infer new increments of basaltic andesite are supplied nearly continuously to the subvolcanic reservoir concurrently to the current eruption and that these new increments are blended into the residing, subvolcanic magma. Thus, the compositional monotony is mostly the product of repetitious production of very similar basaltic andesite. Furthermore, we propose that this quasi-constant supply of small increments of magma is the fundamental cause for small-scale, decade-long continuous volcanic activity; that is, the current eruption of Arenal is flux-controlled by inputs of mantle magmas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive epsilon Nd(i) values in the range of +4.87 to +6.09, approaching the lower limit of MORB-like source, and relatively high ((207)Pb/(204)Pb)(i) (15.57-15.663) at low ((206)Pb/(204)Pb)(i) (18.13-18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low eNdi value of -2.61 and is slightly more Pb radiogenic ((207)Pb/(204)Pb)(i) (15.64) and ((206)Pb/(204)Pb)(i) (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early-Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc-trench system collided with the Rhodope in the Late Jurassic times. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Miocene PX1 gabbro-pyroxenite pluton, Fuerteventura, Canary Islands, is a 3.5 x 5.5 km shallow-level intrusion (0.15-0.2 GPa and 1100-1120 degrees C), interpreted as the feeder-zone to an ocean-island volcano. It displays a vertical magmatic banding expressed in five 50 to 100 metre-wide NNE-SSW trending alkaline gabbro sequences alternating with pyroxenites. This emplacement geometry was controlled by brittle to ductile shear zones, generated by a regional E-W extensional tectonic setting that affected Fuerteventura during the Miocene. At a smaller scale, the PX1 gabbro and pyroxenite bands consist of metre-thick differentiation units, which suggest emplacement by periodic injection of magma pulses as vertical dykes that amalgamated, similarly to a sub-volcanic sheeted dyke complex. Individual dykes underwent internal differentiation following a solidification front parallel to the dyke edges. This solidification front may have been favoured by a significant lateral/horizontal thermal gradient, expressed by the vertical banding in the gabbros, the fractionation asymmetry within individual dykes and the migmatisation of the wall rocks. Pyroxenitic layers result from the fractionation and accumulation of clinopyroxene +/- olivine +/- plagioclase crystals from a mildly alkaline basaltic liquid. They are interpreted as truncated differentiation sequences, from which residual melts were extracted at various stages of their chemical evolution by subsequent dyke intrusions, either next to or within the crystallising unit. Compaction and squeezing of the crystal mush is ascribed to the incoming and inflating magma pulses. The expelled interstitial liquid was likely collected and erupted along with the magma flowing through the newly injected dykes. Clinopyroxene mineral orientation - as evidenced by EBSD and micro X-ray tomography investigations - displays a marked pure-shear component, supporting the interpretation of the role of compaction in the generation of the pyroxenites. Conversely, gabbro sequences underwent minor melt extraction and are believed to represent crystallised coalesced magma batches emplaced at lower rates at the end of eruptive cycles. Clinopyroxene orientations in gabbros record a simple shear component suggesting syn-magmatic deformation parallel to observed NNE-SSW trending shear zones induced by the regional tensional stress field. This emplacement model implies a crystallisation time of 1 to 5 years for individual dykes, consistent with PX1 emplacement over less than 0.5 My. A minimum amount of approximately 150 km(3) of magma is needed to generate the pluton, part of it having been erupted through the Central Volcanic Centre of Fuerteventura. If the regional extensional tectonic regime controls the PX1 feeder-zone initiation and overall geometry, rates and volumes of magma depend on other, source-related factors. High injection rates are likely to induce intrusion growth rates larger than could be accommodated by the regional extension. In this case, dyke intrusion by propagation of a weak tip, combined with the inability of magma to circulate through previously emplaced and crystallised dykes could result in an increase of non-lithostatic pressure on previously emplaced mushy dyke walls; thus generating strong pure-shear compaction within the pluton feeder-zone and interstitial melt expulsion. These compaction-dominated processes are recorded by the cumulitic pyroxenite bands. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the southwestern part of the Aiguilles Rouges massif (pre-Alpine basement of the Helvetic realm, western Alps), a metavolcanic sequence, newly defined as the ``Greenstone Unit'',is exposed in two NS trending belts of several 100 metres in thickness. It consists of epidote amphibolites, partly epidote and/or calcic amphibole-bearing greenschists, and small amounts of alkali feldspar-bearing greenschists, which underwent low- to medium-grade metamorphism during Visean oblique collision. Metamorphic calcic amphiboles and epidotes show strong chemical zoning, whereas metamorphic plagioclase is exclusively albitic in composition (An 1-3). The SiO2 content of the subalkaline tholeiitic to calc-alkaline suite ranges continuously from 44 wt% to 73 wt%,but andesitic rocks predominate. The majority of samples have chemical compositions close to recent subduction-related lavas; some are even restricted to recent oceanic arcs (extremely low Ta and Nb contents, high La/Nb and Th/Ta ratios). But several basaltic to basalto-andesitic samples resemble continental tholeiites (low Th/Ta, La/Nb ratio). As it is very probable that both lava types are to some extent contemporaneous, it is proposed that the Greenstone Unit represents a former oceanic volcanic are which temporarily underwent extension during which emplacement of continental tholeiite-like rocks occurred. The cause of the extension remains ambiguous. Considering palaeotectonic significance and age of other metavolcanic units in the Aiguilles Rouges massif, the Greenstone Unit most likely formed in the Early Palaeozoic.
Resumo:
Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.
Resumo:
Sections through an oceanic plateau are preserved in tectonic slices in the Western Cordillera of Ecuador (South America). The San Juan section is a sequence of mafic-ultramafic cumulates. To establish that these plutonic rocks formed in an oceanic plateau setting, we have developed criteria that discriminate intrusions of oceanic plateaus from those of other tectonic settings. The mineralogy and crystallization sequence of the cumulates are similar to those of intra-plate magmas. Clinopyroxene predominates throughout, and orthopyroxene is only a minor component. Rocks of intermediate composition are absent, and hornblende is restricted to the uppermost massive gabbros within the sequence. The ultramafic cumulates are very depleted in light rare-earth elements (LREE), whereas the gabbros have flat or slightly enriched LREE patterns. The composition of the basaltic liquid in equilibrium with the peridotite, calculated using olivine compositions and REE contents of clinopyroxene, contains between 16% and 8% MgO and has a flat REE pattern. This melt is geochemically similar to other accreted oceanic plateau basalts, isotropic gabbros, and differentiated sills in western Ecuador. The Ecuadorian intrusive and extrusive rocks have a narrow range of epsilonNd(i) (+8 to +5) and have a rather large range of Pb isotopic ratios. Pb isotope systematics of the San Juan plutonic rocks and mineral separates lie along a mixing line between the depleted mantle (DMM) and the enriched-plume end members. This suggests that the Ecuadorian plutonic rocks generated from the mixing of two mantle sources, a depleted mid-oceanic ridge basalt (MORB) source and an enriched one. The latter is characterized by high (Pb-207/Pb-204)(i) ratios and could reflect a contamination by recycled either lower continental crust or oceanic pelagic sediments and (or) altered oceanic crust (enriched mantle type I, EMI). These data suggest that the San Juan sequence represents the plutonic components of an Early Cretaceous oceanic plateau, which accreted in the Late Cretaceous to the Ecuadorian margin.
Resumo:
The bulk composition of magma erupted from Volcan Arenal has remained nearly constant (SiO2 = 53.6-54.9 wt%; MgO = 5.0-4.5 wt%) during almost 30 years of continuous activity (1969-1996). None the less, clinopyroxene (cpx) phenocrysts and their spinel inclusions record a much more complex open-system evolution in which steady-state production of the erupted basaltic andesitic magma is linked to episodic injections of basalt into Arenal's magma conduit/reservoir system. High-resolution major element zoning profiles (electron microprobe) on a large number of phenocrysts (>14,000 analyses), tied to back-scattered electron (BSE) images, have been used to assess the compositional characteristics of the magmatic end members as well as the timing and dynamics of magma replenishment events. No two cpx phenocrysts have exactly the same zoning profile. The vast majority of our analyses record the crystallization of cpx (Cr2O3 < 0.12 wt%; Mg# = 65-79; Al/Ti = 2-7) from a liquid comparable to or more evolved than erupted magma compositions. However, half of all cpx grains are cored by high-Cr cpx (Cr2O3 = 0.2-0.72 wt%) or contain similar basaltic compositions as abrupt growth bands in phenocrysts with and without high-Cr cores; phenocrysts with high-Cr cpx occur throughout the ongoing activity. In a few cases, high-Cr cpx occurs very near the outer margin of the grain without an apparent growth hiatus, particularly in 1968/69 and 1992/93. The main conclusions are: (1) all basaltic andesitic lavas erupted at Arenal during the ongoing activity that began in July, 1968, are the products of magma mixing, (2) clinopyroxenes record multiple replenishment events of basaltic magma in contrast to the near constancy of erupted bulk compositions, (3) some phenocrysts preserve records of multiple interactions with basaltic magmas requiring magmatic processes to operate on time-scales shorter than residence times of some phenocrysts, (4) multiple occurrences of clinopyroxene with high-Cr rims suggest that basalt replenishment events have occurred with sub-decadal frequency and may predate eruption by months or less. From this we infer that Arenal volcano is underlain by a continuously active, small-volume magmatic reservoir maintained in quasi-steady state by basalt recharge over several decades. The monotony of erupting Arenal magmas implies that fractionation, recharge, ascent, and eruption are well balanced in order for magmas to be essentially uniform while containing phenocrysts with vastly different growth histories at the time of eruption.
Resumo:
P>The first Variscan pseudo-adakites were identified in close association with the Saint-Jean-du-Doigt (SJDD) mafic intrusion (Brittany, France) in a geodynamic context unrelated to subduction. These rocks are trondhjemites emplaced 347 +/- 4 Ma ago as 2-3 km2 bodies and dykes. Trace-element concentrations and Sr-Nd-Pb isotope ratios indicate that the SJDD pseudo-adakites probably resulted from extreme differentiation of an SJDD-type hydrous basaltic magma in a lower continental crust of normal thickness (0.8 GPa). Modelling shows that garnet is not a required phase, which was commonly believed to be the case for continental arc-derived adakite-like rocks. A massive fractionation of amphibole fits the data much better and does not require high pressures, in agreement with the inferred extensional tectonic regime at the time of pluton emplacement. Alternatively, the SJDD pseudo-adakites could have resulted from the melting of newly underplated SJDD mafic precursors, but thermal considerations lead us to believe that this was not the case.