116 resultados para BROOD PARASITISM
em Université de Lausanne, Switzerland
Resumo:
We tested the cross-amplification of 37 microsatellites in a population of starlings (Stumus vulgaris). Twenty-three of them amplified and five exhibited a large number of alleles per locus and high heterozygosity (on average: 14.6 alleles/locus and H. = 0.704). We assessed the occurrence of extra-pair paternity (EPP) and intraspecific brood parasitism GBP) in this population. The EPP rate was 16% to 18% offspring from 43% to 45% of nests. IBP was very variable between two successive years (14% to 27% chicks from 25% to 64% of clutches). These five polymorphic markers will be of potential use in studies of genetic diversity, population structure and reproductive strategy of this species.
Resumo:
Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970-1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery.
Resumo:
We have investigated genetic parentage in a Swiss population of tawny owls (Strix aluco). To this end, we performed genetic analysis for six polymorphic loci of 49 avian microsatellite loci tested for cross-species amplification. We found one extra-pair young out of 137 (0.7%) nestlings in 37 families (2.7%). There was no intra-specific brood parasitism. Our results are in accordance with previous findings for other raptors and owls that genetic monogamy is the rule. Female tawny owls cannot raise offspring without a substantial contribution by their mates. Hence one favoured hypothesis is that high paternal investment in reproduction selects for behaviour that prevents cuckoldry.
Resumo:
Formica lugubris and E paralugubris are sympatric sibling species of wood ants, both of which are widely distributed in Switzerland. Until 1996 they were considered the same species, E lugubris. To investigate whether the two species can be distinguished based on discrimination cues used by the workers we used the pupa-carrying test first introduced by Rainer Rosengren. In this test workers of discriminator colonies are faced with two kinds of pupae and their preferences for one of the types are recorded based on differential retrieval. Interspecific comparisons showed that ants preferred conspecific worker pupae to those of the sibling species regardless whether the pupae were con-colonial or hetero-colonial. Hence, this test can be used as a taxonomic tool to identify wood ants hardly distinguishable by morphological characters. In intraspecific comparisons the highly polygynous (many queens per colony) E paralugubris, the polygynous form of E lugubris and the monogynous (single queen per nest) to weakly polygynous form of E lugubris expressed different trends in their preference behaviour (with nestmate recognition in 14%, 20% and 31% of replicates, respectively). Only F paralugubris presented no significant nestmate recognition.
Resumo:
BACKGROUND: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. RESULTS: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. CONCLUSION: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.
Resumo:
Parasites can inflict indirect fitness costs to their hosts by eliciting costly immune responses. These costs depend on the type and amount of immunostimulants presented to the host immune system but also on the amount of resources available to fuel host immune responses. Here, we investigated how the relative costs of two different types of immune challenge are modulated by variation in food availability. We injected nestling tawny owls (Strix aluco) with either 10 mu g of phytohaemagglutinin (PHA) or 20 mu g of lipopolysaccharide (LPS), and subsequently raised them under two different food regimes (food-restricted vs. ad libitum). After controlling for food consumption, we found that LPS-injected nestlings lost more body mass than PHA-injected ones only when food-restricted. We also found that body mass gain of owlets fed ad libitum decreased with the intensity of the skin swelling response against LPS, but not PHA. These experimental and correlative results suggest that nestling tawny owls suffered greater immune costs when treated with LPS than PHA, and that variation in the costs of two different types of immune challenge can be exacerbated under conditions of low food availability. Our study highlights the importance of taking into consideration the interplay between host immunity and nutrition in the study of indirect costs of parasitism.
Resumo:
Résumé : Les relations entre un parasite et son hôte sont avant tout marquées par le coût pour l'hôte que représente la ponction de ressources au profit du parasite et ses conséquences sur les traits d'histoires de vie de l'hôte. Pour contenir la réduction de leur valeur reproductive, les hôtes ont acquis au cours de l'évolution des mécanismes soit de lutte contre les parasites, soit de réallocations des ressources. Curieusement les effets des ectoparasites sur la biologie de mammifères ont été peu étudiés. Dans une première expérience à long terme, nous avons examiné sous un angle intégratif si les puces Nosopsyllus fasciatus affectent certains paramètres physiologiques des campagnols des champs Microtus arvalis. Nous avons également testé si les puces peuvent réduire la longévité et si oui, si ce pourrait être dû à une accélération de la sénescence. Ensuite nous avons testé si la simple activation répétée du système immunitaire comme lors d'une infestation chronique pouvait aussi réduire la longévité. Dans une dernière expérience, nous avons d'abord testé si l'infestation par des puces de jeunes campagnols au stade néonatal (21 jours) pouvait modifier leur développement et leur phénotype adulte. Puis nous avons testé si la modification du phénotype adulte est une réponse prédite et potentiellement adaptative pour minimiser les effets des puces à l'âge adulte. Nos résultats montrent que l'infestation par des puces réduit la croissance subadulte, induit une forte anémie et une immunodépression, et augmente le métabolisme de repos. De plus les puces réduisent la longévité et la taille des testicules, réduisant fortement le succès reproducteur potentiel des individus parasités. La taille finale, c'est-à-dire le développement pré-adulte, détermine en grande part la longévité. La réduction de longévité ne devrait pas être due à l'investissement au profit du système immunitaire car l'activation chronique seule du système immunitaire ne réduit pas la longévité. L'infestation néonatale retarde légèrement le développement mais surtout modifie l'hématocrite et réduit les performances locomotrices des campagnols plus de 3 mois après l'infestation. Les effets immédiats du parasitisme sur la physiologie semblent bien supérieurs comparés aux effets à long terme. Nous n'avons pas d'éléments permettant d'affirmer que le parasitisme néonatal prépare les campagnols à faire face aux puces à l'âge adulte. Au contraire, le parasitisme néonatal interagit sur le parasitisme adulte pour augmenter le métabolisme de repos. Cette thèse offre une vision intégrative des mécanismes par lesquels les puces peuvent affecter la valeur reproductive de leurs hôtes. De façon générale, ces résultats 35 montrent l'importance des puces comme force de sélection chez les campagnols. Il est indispensable de prendre en compte les ectoparasites dans l'étude de l'écologie et des dynamiques de populations chez les mammifères. Summary : The relationship between a parasite and its host is fundamentally marked by the costs for host of the withdrawals of resources by parasite and the subsequent reduction in host life-history traits. Hosts have evolved a number of strategies to reduce these costs, either by fighting against the parasite directly or by reallocating resources to reduce costs on lifetime reproductive value. The effects of ectoparasites on burrowing mammals have been scarcely studied. In a first long-term experiment, we examined how fleas Nosopsyllus fasciatus affect physiological levels of the common vole, Microtus arvalis. We also examined whether fleas reduce longevity and if so, if it is due to an early senescence pattern. Then we tested if experimental activation of the immune system by repeated injections of an antigen could result in a shorter longevity. In the last experiment, we tested if short-lasting neonatal parasitism can have long-term effects on phenotype, and if these effects could induce a predictive response to reduce damages when parasitized at the adult stage. We found that parasitism by flea reduced subadult growth, induced anaemia and immunodepression, and increased energy consumption even when resting. Moreover fleas reduce longevity and testes size associated to splenomegaly, suggesting an overall reduction in fitness but we did not find any pattern of accelerated senescence explaining the early death of parasitized voles compared to non-parasitzed. The cost of mounting an immune response throughout life does not impair longevity, suggesting that it is the cost of parasitism that limits the longevity and not the immune investment. Neonatal infestation by fleas has long-term effects on physiology and reduces motor activity more than 3 months after infestation. The modification of physiology due to long-term effects seems weak compared to the immediate effects of adult infestation. We found no evidence that neonatal parasitism prepares voles to mount a predictive adaptive response in order to reduce effects of fleas on fitness components. On the contrary, neonatal parasitism seems to worsen the effect of adult parasitism. This thesis offers an integrative view of mechanisms by which fleas affect their host at the individual level. Overall, our results demonstrate the importance of fleas as a selective force in voles. These results highlight the importance of ectoparasitism in ecology of micromarnrnals and suggest a role in the dynamic of host populations.
Resumo:
Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.
Resumo:
BACKGROUND: Evidence is accumulating that telomere length is a good predictor of life expectancy, especially early in life, thus calling for determining the factors that affect telomere length at this stage. Here, we investigated the relative influence of early growth conditions and origin (genetics and early maternal effects) on telomere length of collared flycatchers (Ficedula albicollis) at fledging. We experimentally transferred hatchlings among brood triplets to create reduced, control (i.e. unchanged final nestling number) and enlarged broods. RESULTS: Although our treatment significantly affected body mass at fledging, we found no evidence that increased sibling competition affected nestling tarsus length and telomere length. However, mixed models showed that brood triplets explained a significant part of the variance in body mass (18%) and telomere length (19%), but not tarsus length (13%), emphasizing that unmanipulated early environmental factors influenced telomere length. These models also revealed low, but significant, heritability of telomere length (h(2) = 0.09). For comparison, the heritability of nestling body mass and tarsus length was 0.36 and 0.39, respectively, which was in the range of previously published estimates for those two traits in this species. CONCLUSION: Those findings in a wild bird population demonstrate that telomere length at the end of the growth period is weakly, but significantly, determined by genetic and/or maternal factors taking place before hatching. However, we found no evidence that the brood size manipulation experiment, and by extension the early growth conditions, influenced nestling telomere length. The weak heritability of telomere length suggests a close association with fitness in natural populations.
Resumo:
In eusocial Hymenoptera, queens and workers are in conflict over optimal sex allocation. Sex ratio theory, while generating predictions on the extent of this conflict under a wide range of conditions, has largely neglected the fact that worker control of investment almost certainly requires the manipulation of brood sex ratio. This manipulation is likely to incur costs, for example, if workers eliminate male larvae or rear more females as sexuals rather than workers. In this article, we present a model of sex ratio evolution under worker control that incorporates costs of brood manipulation. We assume cost to be a continuous, increasing function of the magnitude of sex ratio manipulation. We demonstrate that costs counterselect sex ratio biasing, which leads to less female-biased population sex ratios than expected on the basis of relatedness asymmetry. Furthermore, differently shaped cost functions lead to different equilibria of manipulation at the colony level. While linear and accelerating cost functions generate monomorphic equilibria, decelerating costs lead to a process of evolutionary branching and hence split sex ratios.
Resumo:
The phenotype of social animals can be influenced by genetic, maternal and environmental effects, which include social interactions during development. In social insects, the social environment and genetic origin of brood can each influence a whole suite of traits, from individual size to caste differentiation. Here, we investigate to which degree the social environment during development affects the survival and fungal resistance of ant brood of known maternal origin. We manipulated one component of the social environment, the worker/brood ratio, of brood originating from single queens of Formica selysi. We monitored the survival of brood and measured the head size and ability to resist the entomopathogenic fungus Beauveria bassiana of the resulting callow workers. The worker/brood ratio and origin of eggs affected the survival and maturation time of the brood and the size of the resulting callow workers. The survival of the callow workers varied greatly according to their origin, both in controls and when challenged with B. bassiana. However, there was no interaction between the fungal challenge and either the worker/brood ratio or origin of eggs, suggesting that these factors did not affect parasite resistance in the conditions tested. Overall, the social conditions during brood rearing and the origin of eggs had a strong impact on brood traits that are important for fitness. We detected a surprisingly large amount of variation among queens in the survival of their brood reared in standard queenless conditions, which calls for further studies on genetic, maternal and social effects influencing brood development in the social insects.
Resumo:
The influence of various social factors on the production of males was investigated in the Argentine ant, Iridomyrmex humilis. In this polygynous species, the workers which are monomorphic are unable to lay reproductive eggs, so all the males are the progeny of the queens. Although male eggs appear to be laid by mated queens throughout the year, in large stock colonies males are reared periodically (every 3 or 4 months); males develop from brood taken from these colonies at any point in the cycle and given queenless or queenright (1 to 5 queens) units. This is in striking contrast to many other species of ants where it is generally assumed that male eggs are laid seasonnally. Comparative experiments suggest that several related factors influence the rearing of males as far as the pupal stage. Worker/larva ratio: The proportion of male larvae developing in standardized units in which the worker/larva ratio was varied from 0.25 to 25 demonstrated that low ratios inhibit male production. Queen influence: In standardized units where the worker/larva ratio was high the presence of queens did not inhibit the rearing of males suggesting that there is no queen inhibitory pheromone controlling male experimental production. Data suggest evidence that queens prevent male production by means of appropriation of food. Diet: Male larvae failed to pupate in experimental societies deprived of protein. Thus, the production of males appears to be controlled by the amount of food available to larvae. This depends on foraging activity, the quantity of brood in relation to the number of workers and the number of queens in the society.
Resumo:
Social insects use multiple lines of collective defences to combat pathogens. One example of a behav- ioural group defence is the use of antimicrobial plant compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, and the presence of resin in their nest protects them against fungal and bacterial pathogens. Many questions remain on the mechanisms of resin use, including which factors elicit resin collection and placement within nests. Here, we investigated whether the presence of brood induces Formica paralugubris workers to collect more resin, and whether the workers preferentially place resin near the brood. We also tested whether the collection and placement of resin depends on the presence of the fungal entomopathogen Beauveria bassiana. Workers brought more resin to their nest when brood was present, and preferentially placed the resin near the brood. In contrast, workers did not increase resin collection in response to exposure to B. bassiana, nor did they place resin closer to contaminated brood or contaminated areas of the nest. This lack of response may be explained by a limited effect of resin against the germination and growth of B. bassiana in vitro. Overall, our main result is that woods ants actively position resin near the brood, which probably confers prophylactic protection against other detrimental microorganisms.
Resumo:
While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.
Resumo:
When siblings differ markedly in their need for food, they may benefit from signalling to each other their willingness to contest the next indivisible food item delivered by the parents. This sib-sib communication system, referred to as 'sibling negotiation', may allow them to adjust optimally to investment in begging. Using barn owl (Two alba) broods. I assessed the role of within-brood age hierarchy on sibling negotiation, and in turn on jostling for position where parents predictably deliver food (i.e. nest-box entrance), begging and within-brood food allocation. More specifically, I examined three predictions derived from a game-theoretical model of sibling negotiation where a senior and a junior sibling compete for food resources (Roulin, 2002a, Johnstone and Roulin, 2003): (1) begging effort invested by the senior sibling should be less sensitive to the junior sibling's negotiation than vice versa; (2) the junior should invest less effort in sibling negotiation than its senior sibling but a similar amount of effort in begging; and (3) within-brood food allocation should be directly related to begging but only indirectly to sibling negotiation. Two-chick broods were created and vocalization in the absence (negotiation signals directed to siblings) and presence (begging signals directed to parents) of parents was recorded. In support of the first prediction, juniors begged at a low cadence after their senior sibling negotiated intensely, probably because negotiation reflects prospective investment in begging and hence willingness to compete. In contrast, the begging of senior siblings was not sensitive to their junior sibling's negotiation. In contrast to the second prediction, juniors negotiated and begged more intensely than their senior sibling apparently because they were hungrier rather than younger. In line with the third prediction, juniors monopolized food delivered by their parents when their senior sibling begged at a low level. The begging cadence of both the junior and senior sibling, the junior's negotiation cadence, the difference in age between the two nest-mates and jostling for position were not associated with the likelihood of monopolizing food. In conclusion, sibling negotiation appears to influence begging behaviour, which, in turn, affects within-brood food allocation. Juniors may negotiate to challenge their senior siblings, and thereby determine whether seniors are less hungry before deciding to beg for food. In contrast, seniors may negotiate to deter juniors from begging.