10 resultados para BLOOD-BRAIN-BARRIER

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the contribution of inflammatory processes in the etiology of late-onset Alzheimer's disease (AD) has been suspected for years, most studies were confined to the analysis of cell-mediated immunological reactions thought to represent an epiphenomenon of AD lesion development. Based on the traditional view of the "immunological privilege" of the brain, which excludes a direct access of human immunoglobulins (Ig) to the central nervous system under normal conditions, little attention has been paid to a possible role of humoral immunity in AD pathogenesis. In the first part of this review, we summarize evidences for a blood-brain barrier (BBB) dysfunction in this disorder and critically comment on earlier observations supporting the presence of anti-brain autoantibodies and immunoglobulins (Ig) in AD brains. Current concepts regarding the Ig turnover in the central nervous system and the mechanisms of glial and neuronal Fc receptors activation are also discussed. In the second part, we present new ex vivo and in vitro data suggesting that human immunoglobulins can interact with tau protein and alter both the dynamics and structural organization of microtubules. Subsequent experiments needed to test this new working hypothesis are addressed at the end of the review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a well-documented neurobiological finding in major depression. Moreover, clinically effective therapy with antidepressant drugs may normalize the HPA axis activity. OBJECTIVE: The aim of this study was to test whether citalopram (R/S-CIT) affects the function of the HPA axis in patients with major depression (DSM IV). METHODS: Twenty depressed patients (11 women and 9 men) were challenged with a combined dexamethasone (DEX) suppression and corticotropin-releasing hormone (CRH) stimulation test (DEX/CRH test) following a placebo week and after 2, 4, and 16 weeks of 40 mg/day R/S-CIT treatment. RESULTS: The results show a time-dependent reduction of adrenocorticotrophic hormone (ACTH) and cortisol response during the DEX/CRH test both in treatment responders and nonresponders within 16 weeks. There was a significant relationship between post-DEX baseline cortisol levels (measured before administration of CRH) and severity of depression at pretreatment baseline. Multiple linear regression analyses were performed to identify the impact of psychopathology and hormonal stress responsiveness and R/S-CIT concentrations in plasma and cerebrospinal fluid (CSF). The magnitude of decrease in cortisol responsivity from pretreatment baseline to week 4 on drug [delta-area under the curve (AUC) cortisol] was a significant predictor (p<0.0001) of the degree of symptom improvement following 16 weeks on drug (i.e., decrease in HAM-D21 total score). The model demonstrated that the interaction of CSF S-CIT concentrations and clinical improvement was the most powerful predictor of AUC cortisol responsiveness. CONCLUSION: The present study shows that decreased AUC cortisol was highly associated with S-CIT concentrations in plasma and CSF. Therefore, our data suggest that the CSF or plasma S-CIT concentrations rather than the R/S-CIT dose should be considered as an indicator of the selective serotonergic reuptake inhibitors (SSRIs) effect on HPA axis responsiveness as measured by AUC cortisol response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2α), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1β), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Management of brain arteriovenous malformation (bAVM) is controversial. We have analyzed the largest surgical bAVM cohort for outcome. METHODS: Both operated and nonoperated cases were included for analysis. A total of 779 patients with bAVMs were consecutively enrolled between 1989 and 2014. Initial management recommendations were recorded before commencement of treatment. Surgical outcome was prospectively recorded and outcomes assigned at the last follow-up visit using modified Rankin Scale. First, a sensitivity analyses was performed to select a subset of the entire cohort for which the results of surgery could be generalized. Second, from this subset, variables were analyzed for risk of deficit or near miss (intraoperative hemorrhage requiring blood transfusion of ≥2.5 L, hemorrhage in resection bed requiring reoperation, and hemorrhage associated with either digital subtraction angiography or embolization). RESULTS: A total of 7.7% of patients with Spetzler-Ponce classes A and B bAVM had an adverse outcome from surgery leading to a modified Rankin Scale >1. Sensitivity analyses that demonstrated outcome results were not subject to selection bias for Spetzler-Ponce classes A and B bAVMs. Risk factors for adverse outcomes from surgery for these bAVMs include size, presence of deep venous drainage, and eloquent location. Preoperative embolization did not affect the risk of perioperative hemorrhage. CONCLUSIONS: Most of the ruptured and unruptured low and middle-grade bAVMs (Spetzler-Ponce A and B) can be surgically treated with a low risk of permanent morbidity and a high likelihood of preventing future hemorrhage. Our results do not apply to Spetzler-Ponce C bAVMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.