7 resultados para BIVALVE LARVAE

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrates show different tendencies in regard to their preference for seeds or fruits infested by insects compared to non-infested ones. Behaviour may include rejection of one type, preferential consumption of one type or no differentiation among them. When comparing infested versus non-infested fruits, most studies have focused on energy content and nutritional components of the food items; but the energy input provided to the consumer is a better measure for the comparison of the value of each type of food. In this study, I calculated the energy assimilated by rodents for the seeds of the palm Attalea butyracea contained in non-infested endocarps and from bruchid beetle larvae contained in infested endocarps. Using the energy assimilation and time of handling by rodents for both types of endocarps, I quantitatively demonstrated that both infested and non-infested endocarps produce a similar energy input. This finding is consistent with the previous hypothesis that there is a trade-off between the energy content and the time required to extract the insect larvae compared with the seeds in endocarps of Attalea butyracea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the reliability of insect larvae as samples for toxicological investigations. For this purpose, larvae of Lucilia sericata were reared on samples of minced pig liver treated with different concentrations of codeine: therapeutic, toxic, and potentially lethal doses. Codeine was detected in all tested larvae, confirming the reliability of these specimens for qualitative toxicology analysis. Furthermore, concentrations measured in larvae were correlated with levels in liver tissue. These observations bring new elements regarding the potential use of opiates concentrations in larvae for estimation of drug levels in human tissues. Morphine and norcodeine, two codeine metabolites, have been also detected at different concentrations depending on the concentration of codeine in pig liver and depending on the substance itself. The effects of codeine on the development of L. sericata were also investigated. Results showed that a 29-h interval bias on the evaluation of the larval stage duration calculated from the larvae weight has to be considered if codeine was present in the larvae substrate. Similarly, a 21-h interval bias on the total duration of development, from egg to imago, has to be considered if codeine was present in the larvae substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate perception of taste information is crucial for animal survival. In adult Drosophila, gustatory receptor neurons (GRNs) perceive chemical stimuli of one specific gustatory modality associated with a stereotyped behavioural response, such as aversion or attraction. We show that GRNs of Drosophila larvae employ a surprisingly different mode of gustatory information coding. Using a novel method for calcium imaging in the larval gustatory system, we identify a multimodal GRN that responds to chemicals of different taste modalities with opposing valence, such as sweet sucrose and bitter denatonium, reliant on different sensory receptors. This multimodal neuron is essential for bitter compound avoidance, and its artificial activation is sufficient to mediate aversion. However, the neuron is also essential for the integration of taste blends. Our findings support a model for taste coding in larvae, in which distinct receptor proteins mediate different responses within the same, multimodal GRN.