49 resultados para BIOTECHNOLOGY ENGINEERING
em Université de Lausanne, Switzerland
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL-17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL-17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL-17F expression improves the efficiency of cell line subcloning processes. IL-17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame.
Resumo:
Hemolytic disease of the newborn is an often fatal condition of some newborn babies due to the immunogenicity of their Rh D positive erythrocytes in the Rh D negative mother. This condition can be prevented by injecting anti-Rh D antibodies. The current source of these antibodies is blood from immunized human donors. In order to avoid problems with limited supply and donor safety, the Rh D project was set up to develop recombinant monoclonal anti-Rh D antibodies as a possible replacement. In a multidisciplinary collaboration between the Zentrallaboratorium Blutspendedienst (ZlB) of the Swiss Red Cross, the Center of Biotechnology of the University and the EPFL (CBUE), and the Institute of Chemical and Biochemical Engineering (EPFl), co-funded by the Swiss National Science Foundation and ZLB, a candidate monoclonal anti-Rh D antibody has been selected, expressed in CHO cells, and a manufacturing process for large-scale production has been developed.
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.
Resumo:
Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.
Resumo:
Root diseases caused by fungal pathogens can be suppressed by certain rhizobacteria that effectively colonize the roots and produce extracellular antifungal compounds. To be effective, biocontrol bacteria need to be present at sufficiently high cell densities. These conditions favor the operation of positive feedback mechanisms that control the production of antifungal compounds in biocontrol strains of fluorescent pseudomonads, via both transcriptional and post-transcriptional mechanisms.
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
The study of wave propagation at sonic frequency in soil leads to elasticity parameter determination. These parameters are compatible to those measured simultaneously by static loading. The acquisition of in situ elasticity parameter combined with laboratory description of the elastoplastic behaviour can lead to in situ elastoplastic curves. - L'étude de la propagation des ondes acoustiques permet la détermination des paramètres d'élasticité dans les sols. Ces paramètres sont cohérents avec des mesures statiques simultanées. L'acquisition des paramètres d'élasticité in situ associée à une description du comportement élasto-plastique mesuré en laboratoire permet d'obtenir des courbes d'élastoplasticité in situ.
Resumo:
It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.
Resumo:
State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.