124 resultados para BIOINFORMATICS DATABASES
em Université de Lausanne, Switzerland
Resumo:
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article.
Resumo:
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years.
Resumo:
High throughput genome (HTG) and expressed sequence tag (EST) sequences are currently the most abundant nucleotide sequence classes in the public database. The large volume, high degree of fragmentation and lack of gene structure annotations prevent efficient and effective searches of HTG and EST data for protein sequence homologies by standard search methods. Here, we briefly describe three newly developed resources that should make discovery of interesting genes in these sequence classes easier in the future, especially to biologists not having access to a powerful local bioinformatics environment. trEST and trGEN are regularly regenerated databases of hypothetical protein sequences predicted from EST and HTG sequences, respectively. Hits is a web-based data retrieval and analysis system providing access to precomputed matches between protein sequences (including sequences from trEST and trGEN) and patterns and profiles from Prosite and Pfam. The three resources can be accessed via the Hits home page (http://hits. isb-sib.ch).
Resumo:
Phylogenomic databases provide orthology predictions for species with fully sequenced genomes. Although the goal seems well-defined, the content of these databases differs greatly. Seven ortholog databases (Ensembl Compara, eggNOG, HOGENOM, InParanoid, OMA, OrthoDB, Panther) were compared on the basis of reference trees. For three well-conserved protein families, we observed a generally high specificity of orthology assignments for these databases. We show that differences in the completeness of predicted gene relationships and in the phylogenetic information are, for the great majority, not due to the methods used, but to differences in the underlying database concepts. According to our metrics, none of the databases provides a fully correct and comprehensive protein classification. Our results provide a framework for meaningful and systematic comparisons of phylogenomic databases. In the future, a sustainable set of 'Gold standard' phylogenetic trees could provide a robust method for phylogenomic databases to assess their current quality status, measure changes following new database releases and diagnose improvements subsequent to an upgrade of the analysis procedure.
Resumo:
ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a 'decentralized' way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across 'selected' resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
MOTIVATION: Microarray results accumulated in public repositories are widely reused in meta-analytical studies and secondary databases. The quality of the data obtained with this technology varies from experiment to experiment, and an efficient method for quality assessment is necessary to ensure their reliability. RESULTS: The lack of a good benchmark has hampered evaluation of existing methods for quality control. In this study, we propose a new independent quality metric that is based on evolutionary conservation of expression profiles. We show, using 11 large organ-specific datasets, that IQRray, a new quality metrics developed by us, exhibits the highest correlation with this reference metric, among 14 metrics tested. IQRray outperforms other methods in identification of poor quality arrays in datasets composed of arrays from many independent experiments. In contrast, the performance of methods designed for detecting outliers in a single experiment like Normalized Unscaled Standard Error and Relative Log Expression was low because of the inability of these methods to detect datasets containing only low-quality arrays and because the scores cannot be directly compared between experiments. AVAILABILITY AND IMPLEMENTATION: The R implementation of IQRray is available at: ftp://lausanne.isb-sib.ch/pub/databases/Bgee/general/IQRray.R. CONTACT: Marta.Rosikiewicz@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
BACKGROUND: Superinfection with drug resistant HIV strains could potentially contribute to compromised therapy in patients initially infected with drug-sensitive virus and receiving antiretroviral therapy. To investigate the importance of this potential route to drug resistance, we developed a bioinformatics pipeline to detect superinfection from routinely collected genotyping data, and assessed whether superinfection contributed to increased drug resistance in a large European cohort of viremic, drug treated patients. METHODS: We used sequence data from routine genotypic tests spanning the protease and partial reverse transcriptase regions in the Virolab and EuResist databases that collated data from five European countries. Superinfection was indicated when sequences of a patient failed to cluster together in phylogenetic trees constructed with selected sets of control sequences. A subset of the indicated cases was validated by re-sequencing pol and env regions from the original samples. RESULTS: 4425 patients had at least two sequences in the database, with a total of 13816 distinct sequence entries (of which 86% belonged to subtype B). We identified 107 patients with phylogenetic evidence for superinfection. In 14 of these cases, we analyzed newly amplified sequences from the original samples for validation purposes: only 2 cases were verified as superinfections in the repeated analyses, the other 12 cases turned out to involve sample or sequence misidentification. Resistance to drugs used at the time of strain replacement did not change in these two patients. A third case could not be validated by re-sequencing, but was supported as superinfection by an intermediate sequence with high degenerate base pair count within the time frame of strain switching. Drug resistance increased in this single patient. CONCLUSIONS: Routine genotyping data are informative for the detection of HIV superinfection; however, most cases of non-monophyletic clustering in patient phylogenies arise from sample or sequence mix-up rather than from superinfection, which emphasizes the importance of validation. Non-transient superinfection was rare in our mainly treatment experienced cohort, and we found a single case of possible transmitted drug resistance by this route. We therefore conclude that in our large cohort, superinfection with drug resistant HIV did not compromise the efficiency of antiretroviral treatment.
Resumo:
BACKGROUND: DNA sequence integrity, mRNA concentrations and protein-DNA interactions have been subject to genome-wide analyses based on microarrays with ever increasing efficiency and reliability over the past fifteen years. However, very recently novel technologies for Ultra High-Throughput DNA Sequencing (UHTS) have been harnessed to study these phenomena with unprecedented precision. As a consequence, the extensive bioinformatics environment available for array data management, analysis, interpretation and publication must be extended to include these novel sequencing data types. DESCRIPTION: MIMAS was originally conceived as a simple, convenient and local Microarray Information Management and Annotation System focused on GeneChips for expression profiling studies. MIMAS 3.0 enables users to manage data from high-density oligonucleotide SNP Chips, expression arrays (both 3'UTR and tiling) and promoter arrays, BeadArrays as well as UHTS data using MIAME-compliant standardized vocabulary. Importantly, researchers can export data in MAGE-TAB format and upload them to the EBI's ArrayExpress certified data repository using a one-step procedure. CONCLUSION: We have vastly extended the capability of the system such that it processes the data output of six types of GeneChips (Affymetrix), two different BeadArrays for mRNA and miRNA (Illumina) and the Genome Analyzer (a popular Ultra-High Throughput DNA Sequencer, Illumina), without compromising on its flexibility and user-friendliness. MIMAS, appropriately renamed into Multiomics Information Management and Annotation System, is currently used by scientists working in approximately 50 academic laboratories and genomics platforms in Switzerland and France. MIMAS 3.0 is freely available via http://multiomics.sourceforge.net/.
Resumo:
The MyHits web server (http://myhits.isb-sib.ch) is a new integrated service dedicated to the annotation of protein sequences and to the analysis of their domains and signatures. Guest users can use the system anonymously, with full access to (i) standard bioinformatics programs (e.g. PSI-BLAST, ClustalW, T-Coffee, Jalview); (ii) a large number of protein sequence databases, including standard (Swiss-Prot, TrEMBL) and locally developed databases (splice variants); (iii) databases of protein motifs (Prosite, Interpro); (iv) a precomputed list of matches ('hits') between the sequence and motif databases. All databases are updated on a weekly basis and the hit list is kept up to date incrementally. The MyHits server also includes a new collection of tools to generate graphical representations of pairwise and multiple sequence alignments including their annotated features. Free registration enables users to upload their own sequences and motifs to private databases. These are then made available through the same web interface and the same set of analytical tools. Registered users can manage their own sequences and annotations using only web tools and freeze their data in their private database for publication purposes.
Resumo:
The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.
Resumo:
BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.
Resumo:
Expert curation and complete collection of mutations in genes that affect human health is essential for proper genetic healthcare and research. Expert curation is given by the curators of gene-specific mutation databases or locus-specific databases (LSDBs). While there are over 700 such databases, they vary in their content, completeness, time available for curation, and the expertise of the curator. Curation and LSDBs have been discussed, written about, and protocols have been provided for over 10 years, but there have been no formal recommendations for the ideal form of these entities. This work initiates a discussion on this topic to assist future efforts in human genetics. Further discussion is welcome.