6 resultados para BILLIARD

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVE: Prior research has identified five common genetic variants associated with narcolepsy with cataplexy in Caucasian patients. To replicate and/or extend these findings, we have tested HLA-DQB1, the previously identified 5 variants, and 10 other potential variants in a large European sample of narcolepsy with cataplexy subjects. DESIGN: Retrospective case-control study. SETTING: A recent study showed that over 76% of significant genome-wide association variants lie within DNase I hypersensitive sites (DHSs). From our previous GWAS, we identified 30 single nucleotide polymorphisms (SNPs) with P < 10(-4) mapping to DHSs. Ten SNPs tagging these sites, HLADQB1, and all previously reported SNPs significantly associated with narcolepsy were tested for replication. PATIENTS AND PARTICIPANTS: For GWAS, 1,261 narcolepsy patients and 1,422 HLA-DQB1*06:02-matched controls were included. For HLA study, 1,218 patients and 3,541 controls were included. MEASUREMENTS AND RESULTS: None of the top variants within DHSs were replicated. Out of the five previously reported SNPs, only rs2858884 within the HLA region (P < 2x10(-9)) and rs1154155 within the TRA locus (P < 2x10(-8)) replicated. DQB1 typing confirmed that DQB1*06:02 confers an extraordinary risk (odds ratio 251). Four protective alleles (DQB1*06:03, odds ratio 0.17, DQB1*05:01, odds ratio 0.56, DQB1*06:09 odds ratio 0.21, DQB1*02 odds ratio 0.76) were also identified. CONCLUSION: An overwhelming portion of genetic risk for narcolepsy with cataplexy is found at DQB1 locus. Since DQB1*06:02 positive subjects are at 251-fold increase in risk for narcolepsy, and all recent cases of narcolepsy after H1N1 vaccination are positive for this allele, DQB1 genotyping may be relevant to public health policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mating systems, that is, whether organisms give rise to progeny by selfing, inbreeding or outcrossing, strongly affect important ecological and evolutionary processes. Large variations in mating systems exist in fungi, allowing the study of their origin and consequences. In fungi, sexual incompatibility is determined by molecular recognition mechanisms, controlled by a single mating-type locus in most unifactorial fungi. In Basidiomycete fungi, however, which include rusts, smuts and mushrooms, a system has evolved in which incompatibility is controlled by two unlinked loci. This bifactorial system probably evolved from a unifactorial system. Multiple independent transitions back to a unifactorial system occurred. It is still unclear what force drove evolution and maintenance of these contrasting inheritance patterns that determine mating compatibility. Here, we give an overview of the evolutionary factors that might have driven the evolution of bifactoriality from a unifactorial system and the transitions back to unifactoriality. Bifactoriality most likely evolved for selfing avoidance. Subsequently, multiallelism at mating-type loci evolved through negative frequency-dependent selection by increasing the chance to find a compatible mate. Unifactoriality then evolved back in some species, possibly because either selfing was favoured or for increasing the chance to find a compatible mate in species with few alleles. Owing to the existence of closely related unifactorial and bifactorial species and the increasing knowledge of the genetic systems of the different mechanisms, Basidiomycetes provide an excellent model for studying the different forces that shape breeding systems.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15-25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 x 10(-8)). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 x 10(-43)) and DRB1*1301-DQB1*0603 (P < 3 x 10(-7)). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 x 10(-14)). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.