163 resultados para BCR-ABL KINASE

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular monitoring of BCR/ABL transcripts by real time quantitative reverse transcription PCR (qRT-PCR) is an essential technique for clinical management of patients with BCR/ABL-positive CML and ALL. Though quantitative BCR/ABL assays are performed in hundreds of laboratories worldwide, results among these laboratories cannot be reliably compared due to heterogeneity in test methods, data analysis, reporting, and lack of quantitative standards. Recent efforts towards standardization have been limited in scope. Aliquots of RNA were sent to clinical test centers worldwide in order to evaluate methods and reporting for e1a2, b2a2, and b3a2 transcript levels using their own qRT-PCR assays. Total RNA was isolated from tissue culture cells that expressed each of the different BCR/ABL transcripts. Serial log dilutions were prepared, ranging from 100 to 10-5, in RNA isolated from HL60 cells. Laboratories performed 5 independent qRT-PCR reactions for each sample type at each dilution. In addition, 15 qRT-PCR reactions of the 10-3 b3a2 RNA dilution were run to assess reproducibility within and between laboratories. Participants were asked to run the samples following their standard protocols and to report cycle threshold (Ct), quantitative values for BCR/ABL and housekeeping genes, and ratios of BCR/ABL to housekeeping genes for each sample RNA. Thirty-seven (n=37) participants have submitted qRT-PCR results for analysis (36, 37, and 34 labs generated data for b2a2, b3a2, and e1a2, respectively). The limit of detection for this study was defined as the lowest dilution that a Ct value could be detected for all 5 replicates. For b2a2, 15, 16, 4, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. For b3a2, 20, 13, and 4 labs showed a limit of detection at the 10-5, 10-4, and 10-3 dilutions, respectively. For e1a2, 10, 21, 2, and 1 lab(s) showed a limit of detection at the 10-5, 10-4, 10-3, and 10-2 dilutions, respectively. Log %BCR/ABL ratio values provided a method for comparing results between the different laboratories for each BCR/ABL dilution series. Linear regression analysis revealed concordance among the majority of participant data over the 10-1 to 10-4 dilutions. The overall slope values showed comparable results among the majority of b2a2 (mean=0.939; median=0.9627; range (0.399 - 1.1872)), b3a2 (mean=0.925; median=0.922; range (0.625 - 1.140)), and e1a2 (mean=0.897; median=0.909; range (0.5174 - 1.138)) laboratory results (Fig. 1-3)). Thirty-four (n=34) out of the 37 laboratories reported Ct values for all 15 replicates and only those with a complete data set were included in the inter-lab calculations. Eleven laboratories either did not report their copy number data or used other reporting units such as nanograms or cell numbers; therefore, only 26 laboratories were included in the overall analysis of copy numbers. The median copy number was 348.4, with a range from 15.6 to 547,000 copies (approximately a 4.5 log difference); the median intra-lab %CV was 19.2% with a range from 4.2% to 82.6%. While our international performance evaluation using serially diluted RNA samples has reinforced the fact that heterogeneity exists among clinical laboratories, it has also demonstrated that performance within a laboratory is overall very consistent. Accordingly, the availability of defined BCR/ABL RNAs may facilitate the validation of all phases of quantitative BCR/ABL analysis and may be extremely useful as a tool for monitoring assay performance. Ongoing analyses of these materials, along with the development of additional control materials, may solidify consensus around their application in routine laboratory testing and possible integration in worldwide efforts to standardize quantitative BCR/ABL testing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the translocation t(9;22)(q34;q11) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations and mutations and thereby progression to accelerated phase (AP) and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show additional alterations at diagnosis. This proportion rises during the course of the disease up to 80% in BC. Acquisition of chromosomal changes during treatment is considered as a poor prognostic indicator, whereas the impact of chromosomal aberrations at diagnosis depends on their type. Patients with major route additional chromosomal alterations (major ACA: +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) have a worse outcome whereas patients with minor route ACA show no difference in overall survival (OS) and progression-free survival (PFS) compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). However, the impact of balanced vs. unbalanced (gains or losses of chromosomes or chromosomal material) karyotypes at diagnosis on prognosis of CML is not clear yet. Patients and methods: Clinical and cytogenetic data of 1346 evaluable out of 1544 patients with Philadelphia and BCR-ABL positive CP CML randomized until December 2011 to the German CML-Study IV, a randomized 5-arm trial to optimize imatinib therapy by combination, or dose escalation and stem cell transplantation were investigated. There were 540 females (40%) and 806 males (60%). Median age was 53 years (range, 16-88). The impact of additional cytogenetic aberrations in combination with an unbalanced or balanced karyotype at diagnosis on time to complete cytogenetic and major molecular remission (CCR, MMR), PFS and OS was investigated. Results: At diagnosis 1174/1346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). In 64 of 75 patients with t(v;22), only one further chromosome was involved in the translocation; In 8 patients two, in 2 patients three, and in one patient four further chromosomes were involved. Ninety seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had major or minor ACA. Thirty six of the 53 patients (2.7%) had an unbalanced karyotype (including all patients with major route ACA and patients with other unbalanced alterations like -X, del(1)(q21), del(5)(q11q14), +10, t(15;17)(p10;p10), -21), and 17 (1.3%) a balanced karyotype with reciprocal translocations [e.g. t(1;21); t(2;16); t(3;12); t(4;6); t(5;8); t(15;20)]. After a median observation time of 5.6 years for patients with t(9;22), t(v;22), -Y, balanced and unbalanced karyotype with ACA median times to CCR were 1.05, 1.05, 1.03, 2.58 and 1.51 years, to MMR 1.31, 1.51, 1.65, 2.97 and 2.07 years. Time to CCR and MMR was longer in patients with balanced karyotypes (data statistically not significant). 5-year PFS was 89%, 78%, 87%, 94% and 69% and 5-year OS 91%, 87%, 89%, 100% and 73%, respectively. In CML patients with unbalanced karyotype PFS (p<0.001) and OS (p<0.001) were shorter than in patients with standard translocation (or balanced karyotype; p<0.04 and p<0.07, respectively). Conclusion: We conclude that the prognostic impact of additional cytogenetic alterations at diagnosis of CML is heterogeneous and consideration of their types may be important. Not only patients with major route ACA at diagnosis of CML but also patients with unbalanced karyotypes identify a group of patients with shorter PFS and OS as compared to all other patients. Therefore, different therapeutic options such as intensive therapy with the most potent tyrosine kinase inhibitors or stem cell transplantation are required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha(1)-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7+/-0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6+/-1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration-response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualizing imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nilotinib, a novel tyrosine kinase inhibitor (TKI) that inhibits BCR-ABL, the stem cell factor receptor (KIT), and platelet-derived growth factor receptor-alpha (PDGFRα), is approved for the treatment of patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and those with CML that is imatinib-resistant or -intolerant. Due to its potent inhibition of KIT and PDGFRα--the two tyrosine kinases that are the central oncogenic mechanisms of gastrointestinal stromal tumors (GIST)--nilotinib also has been investigated for potential efficacy and safety in patients with GIST who have progressed on other approved treatments. Initial results have been encouraging, as nilotinib has demonstrated clinical efficacy and safety in a phase I trial as either a single agent or in combination with imatinib, as well as in heavily pretreated patients with GIST in a compassionate use program. In addition, the phase III trial of nilotinib versus best supportive care (with or without a TKI at the investigator's discretion) indicated that nilotinib may have efficacy in some third-line patients. Furthermore, the Evaluating Nilotinib Efficacy and Safety in Clinical Trials (ENEST g1 trial), a phase III randomized, open-label study comparing the safety and efficacy of imatinib versus nilotinib in the first-line treatment of patients with GIST, is currently under way. Other studies with nilotinib either have been initiated or are in development. Based on published and accruing clinical data, nilotinib shows potential as a new drug in the clinician's armamentarium for the management of GIST.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Within the frame of a twinning programme with Nicaragua, The La Mascota project, we evaluated in our study the contribution of cytogenetic characterization of acute lymphoblastic leukemia (ALL) as prognostic factor compared to clinical, morphological, and immunohistochemical parameters. METHODS: All patients with ALL treated at the only cancer pediatric hospital in Nicaragua during 2006 were studied prospectively. Diagnostic immunophenotyping was performed locally and bone marrow or blood samples were sent to the cytogenetic laboratory of Zurich for fluorescence in situ hybridization (FISH) analysis and G-banding. RESULTS: Sixty-six patients with ALL were evaluated. Their mean age at diagnosis was 7.3 years, 31.8% were >or=10 years. Thirty-four patients (51.5%) presented with hyperleucocytosis >or=50 x 10(9)/L, 45 (68.2%) had hepatosplenomegaly. Immunophenotypically 63/66 patients (95%) had a B-precursor, 2 (3%) a T- and 1 (1.5%) a B-mature ALL. FISH analysis demonstrated a TEL/AML1 fusion in 9/66 (14%), BCR/ABL fusion in 1 (1.5%), MLL rearrangement in 2 (3.1%), iAMP21 in 2 (3.1%), MYC rearrangement in 1 (1.5%), and high-hyperdiploidy in 16 (24%). All patients but two with TEL/AML1 fusion and high-hyperdiploidy were clinically and hematologically in the standard risk group whereas those with poor cytogenetic factors had clinical high-risk features and were treated intensively. CONCLUSIONS: Compared to Europe, the ALL population in Nicaragua is older, has a higher proportion of poor prognostic clinical and hematological features and receives more intensive treatment, while patients with TEL/AML1 translocations and high-hyperdiploidy are clinically in the standard risk group. Cytogenetics did not contribute as an additional prognostic factor in this setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prognostic relevance of additional cytogenetic findings at diagnosis of chronic myeloid leukemia (CML) is unclear. The impact of additional cytogenetic findings at diagnosis on time to complete cytogenetic (CCR) and major molecular remission (MMR) and progression-free (PFS) and overall survival (OS) was analyzed using data from 1151 Philadelphia chromosome-positive (Ph(+)) CML patients randomized to the German CML Study IV. At diagnosis, 1003 of 1151 patients (87%) had standard t(9;22)(q34;q11) only, 69 patients (6.0%) had variant t(v;22), and 79 (6.9%) additional cytogenetic aberrations (ACAs). Of these, 38 patients (3.3%) lacked the Y chromosome (-Y) and 41 patients (3.6%) had ACAs except -Y; 16 of these (1.4%) were major route (second Philadelphia [Ph] chromosome, trisomy 8, isochromosome 17q, or trisomy 19) and 25 minor route (all other) ACAs. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), -Y, minor- and major-route ACAs, the 5-year PFS was 90%, 81%, 88%, 96%, and 50%, and the 5-year OS was 92%, 87%, 91%, 96%, and 53%, respectively. In patients with major-route ACAs, the times to CCR and MMR were longer and PFS and OS were shorter (P < .001) than in patients with standard t(9;22). We conclude that major-route ACAs at diagnosis are associated with a negative impact on survival and signify progression to the accelerated phase and blast crisis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS: The aims of this observational study were to assess the variability in imatinib pharmacokinetics and to explore the relationship between its disposition and various biological covariates, especially plasma alpha1-acid glycoprotein concentrations. METHODS: A population pharmacokinetic analysis was performed using NONMEM based on 321 plasma samples from 59 patients with either chronic myeloid leukaemia or gastrointestinal stromal tumours. The influence of covariates on oral clearance and volume of distribution was examined. Furthermore, the in vivo intracellular pharmacokinetics of imatinib was explored in five patients. RESULTS: A one-compartment model with first-order absorption appropriately described the data, giving a mean (+/-SEM) oral clearance of 14.3 l h-1 (+/-1.0) and a volume of distribution of 347 l (+/-62). Oral clearance was influenced by body weight, age, sex and disease diagnosis. A large proportion of the interindividual variability (36% of clearance and 63% of volume of distribution) remained unexplained by these demographic covariates. Plasma alpha1-acid glycoprotein concentrations had a marked influence on total imatinib concentrations. Moreover, we observed an intra/extracellular ratio of 8, suggesting substantial uptake of the drug into the target cells. CONCLUSION: Because of the high pharmacokinetic variability of imatinib and the reported relationships between its plasma concentration and efficacy and toxicity, the usefulness of therapeutic drug monitoring as an aid to optimizing therapy should be further investigated. Ideally, such an approach should take account of either circulating alpha1-acid glycoprotein concentrations or free imatinib concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytogenic analysis of leukemic cells has proven to be a mandatory part of the diagnosis of malignant hemopathies. Recurring clonal cytogenetic abnormalities may be divided into those exclusively associated with myeloid disorders, those uniquely observed in lymphoid diseases, and those detected in both myeloid and lymphoid hemopathies. Several of the common defects are characteristic of specific FAB types or subtypes and are associated with specific clinico pathologic syndromes and clinical complications. Cytogenetic abnormalities have served to define relatively homogeneous subsets of malignant hemopathies which are not evident from morphological and other available markers. Cytogenetic findings have been demonstrated to be powerful indicators in predicting clinical course and outcome in patients and in guiding their management. Given the significant progress made in the treatment of malignant hemopathies, it is very important to identify parameters which may be used to predict whether patients will respond favorably to standard therapies or if they are unlikely to do so and require alternative strategies, such as bone marrow transplantation. Cytogenetic studies have also provided important insights into the understanding of malignant transformation processes. In a number of recurring chromosome translocations characteristic of leukemias and lymphomas the genes that are located at the breakpoints have been identified. Molecular analysis has revealed that alteration in expression of these genes or in the properties of the encoded proteins resulting from the rearrangements plays an integral part in malignant transformation. Studies of clonality have suggested that several chromosome abnormalities may arise in pluripotent hemopoietic stem cells, whereas others may originate in cells of more restricted lineage. The author focuses first on the implications of the karyotype in the diagnosis and the prognosis of myeloproliferative syndromes, acute leukemias and myelodysplastic syndromes, then on the interest of describing new clinical-cytogenetic associations. Finally, some of the recent results obtained in a cytogenetic study of myelodysplastic syndromes are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of the study was to examine the biotransformation of the anticancer drug imatinib in target cells by incubating it with oxidoreductases expressed in tumor cells. The second objective was to obtain an in silico prediction of the potential activity of imatinib metabolites. An in vitro enzyme kinetic study was performed with cDNA expressed human oxidoreductases and LC-MS/MS analysis. The kinetic parameters (Km and Vmax) were determined for six metabolites. A molecular modeling approach was used to dock these metabolites to the target Abl or Bcr-Abl kinases. CYP3A4 isozyme showed the broadest metabolic capacity, whereas CYP1A1, CYP1B1 and FMO3 isozymes biotransformed imatinib with a high intrinsic clearance. The predicted binding modes for the metabolites to Abl were comparable to that of the parent drug, suggesting potential activity. These findings indicate that CYP1A1 and CYP1B1, which are known to be overexpressed in a wide range of tumors, are involved in the biotransformation of imatinib. They could play a role in imatinib disposition in the targeted stem, progenitor and differentiated cancer cells, with a possible contribution of the metabolites toward the activity of the drug.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To compare a less intensive regimen based on high-dose imatinib (IM) to an intensive IM/HyperCVAD regimen in adults with Ph+ ALL, in terms of early response and outcome after stem cell transplantation (SCT). Methods: Patients aged 18-60 years with previously untreated Ph+ ALL not evolving from chronic myeloid leukemia were eligible if no contra-indication to chemotherapy and SCT (ClinicalTrials.gov ID, NCT00327678). After a steroid prephase allowing Ph and/or BCR-ABL diagnosis, cycle 1 differed between randomization arms. In arm A (IM-based), IM was given at 800 mg on day 1-28, combined with vincristine (2 mg, day 1, 8, 15, 22) and dexamethasone (40 mg, day 1-2, 8-9, 15-16, and 22-23) only. In arm B (IM/HyperCVAD), IM was given at 800 mg on day 1-14, combined with adriamycin (50 mg/m2, day 4), cyclophosphamide (300 mg/m2/12h, day 1, 2, 3), vincristine (2 mg, day 4 and 11), and dexamethasone (40 mg, day 1-4 and 11-14). All patients received a cycle 2 combining high-dose methotrexate (1 g/m2, day 1) and AraC (3 g/m2/12h, day 2 and 3) with IM at 800 mg on day 1-14, whatever their response. Four intrathecal infusions were given during this induction/consolidation period. Minimal residual disease (MRD) was centrally evaluated by quantitative RQ-PCR after cycle 1 (MRD1) and cycle 2 (MRD2). Major MRD response was defined as BCR-ABL/ABL ratio <0.1%. Then, all patients were to receive allogeneic SCT using related or unrelated matched donor stem cells or autologous SCT if no donor and a major MRD2 response. IM/chemotherapy maintenance was planned after autologous SCT. In the absence of SCT, patients received alternating cycles 1 (as in arm B) and cycles 2 followed by maintenance, like in the published IM/HyperCVAD regimen. The primary objective was non-inferiority of arm A in term of major MRD2 response. Secondary objectives were CR rate, SCT rate, treatment- and transplant-related mortality, relapse-free (RFS), event-free (EFS) and overall (OS) survival. Results: Among the 270 patients randomized between May 2006 and August 2011, 265 patients were evaluable for this analysis (133 arm A, 132 arm B; median age, 47 years; median follow-up, 40 months). Main patient characteristics were well-balanced between both arms. Due to higher induction mortality in arm B (9 versus 1 deaths; P=0.01), CR rate was higher in the less intensive arm A (98% versus 89% after cycle 1 and 98% versus 91% after cycle 2; P= 0.003 and 0.006, respectively). A total of 213 and 205 patients were evaluated for bone marrow MRD1 and MRD2. The rates of patients reaching major MRD response and undetectable MRD were 45% (44% arm A, 46% arm B; P=0.79) and 10% (in both arms) at MRD1 and 66% (68% arm A, 63.5% arm B; P=0.56) and 25% (28% arm A, 22% arm B; P=0.33) at MRD2, respectively. The non-inferiority primary endpoint was thus demonstrated (P= 0.002). Overall, EFS was estimated at 42% (95% CI, 35-49) and OS at 51% (95% CI, 44-57) at 3 years, with no difference between arm A and B (46% versus 38% and 53% versus 49%; P=0.25 and 0.61, respectively). Of the 251 CR patients, 157 (80 arm A, 77 arm B) and 34 (17 in both arms) received allogeneic and autologous SCT in first CR, respectively. Allogeneic transplant-related mortality was similar in both arms (31.5% versus 22% at 3 years; P=0.51). Of the 157 allografted patients, 133 had MRD2 evaluation and 89 had MRD2 <0.1%. In these patients, MRD2 did not significantly influence post-transplant RFS and OS, either when tested with the 0.1% cutoff or as a continuous log covariate. Of the 34 autografted patients, 31 had MRD2 evaluation and, according to the protocol, 28 had MRD2 <0.1%. When restricting the comparison to patients achieving major MRD2 response and with the current follow-up, a trend for better results was observed after autologous as compared to allogeneic SCT (RFS, 63% versus 49.5% and OS, 69% versus 58% at 3 years; P=0.35 and P=0.08, respectively). Conclusions: In adults, the use of TK inhibitors (TKI) has markedly improved the results of Ph+ ALL therapy, now close to those observed in Ph-negative ALL. We demonstrated here that chemotherapy intensity may be safely reduced when associated with high-dose IM. We will further explore this TKI-based strategy using nilotinib prior to SCT in our next GRAAPH-2013 trial. The trend towards a better outcome after autologous compared to allogeneic SCT observed in MRD responders validates MRD as an important early surrogate endpoint for treatment stratification and new drug investigation in this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Within the frame of a twinning programme with Nicaragua, The La Mascota project, we evaluated in our study the contribution of cytogenetic characterization of acute lymphoblastic leukemia (ALL) as prognostic factor compared to clinical, morphological, and immunohistochemical parameters. METHODS: All patients with ALL treated at the only cancer pediatric hospital in Nicaragua during 2006 were studied prospectively. Diagnostic immunophenotyping was performed locally and bone marrow or blood samples were sent to the cytogenetic laboratory of Zurich for fluorescence in situ hybridization (FISH) analysis and G-banding. RESULTS: Sixty-six patients with ALL were evaluated. Their mean age at diagnosis was 7.3 years, 31.8% were >or=10 years. Thirty-four patients (51.5%) presented with hyperleucocytosis >or=50 x 10(9)/L, 45 (68.2%) had hepatosplenomegaly. Immunophenotypically 63/66 patients (95%) had a B-precursor, 2 (3%) a T- and 1 (1.5%) a B-mature ALL. FISH analysis demonstrated a TEL/AML1 fusion in 9/66 (14%), BCR/ABL fusion in 1 (1.5%), MLL rearrangement in 2 (3.1%), iAMP21 in 2 (3.1%), MYC rearrangement in 1 (1.5%), and high-hyperdiploidy in 16 (24%). All patients but two with TEL/AML1 fusion and high-hyperdiploidy were clinically and hematologically in the standard risk group whereas those with poor cytogenetic factors had clinical high-risk features and were treated intensively. CONCLUSIONS: Compared to Europe, the ALL population in Nicaragua is older, has a higher proportion of poor prognostic clinical and hematological features and receives more intensive treatment, while patients with TEL/AML1 translocations and high-hyperdiploidy are clinically in the standard risk group. Cytogenetics did not contribute as an additional prognostic factor in this setting.